scholarly journals Long-term enhancement of visual responses by repeated transcranial electrical stimulation of the mouse visual cortex

2019 ◽  
Vol 12 (6) ◽  
pp. 1421-1428 ◽  
Author(s):  
Despoina Tsapa ◽  
Mehran Ahmadlou ◽  
J. Alexander Heimel
1987 ◽  
Vol 57 (4) ◽  
pp. 977-1001 ◽  
Author(s):  
H. A. Swadlow ◽  
T. G. Weyand

The intrinsic stability of the rabbit eye was exploited to enable receptive-field analysis of antidromically identified corticotectal (CT) neurons (n = 101) and corticogeniculate (CG) neurons (n = 124) in visual area I of awake rabbits. Eye position was monitored to within 1/5 degrees. We also studied the receptive-field properties of neurons synaptically activated via electrical stimulation of the dorsal lateral geniculate nucleus (LGNd). Whereas most CT neurons had either complex (59%) or motion/uniform (15%) receptive fields, we also found CT neurons with simple (9%) and concentric (4%) receptive fields. Most complex CT cells were broadly tuned to both stimulus orientation and velocity, but only 41% of these cells were directionally selective. We could elicit no visual responses from 6% of CT cells, and these cells had significantly lower conduction velocities than visually responsive CT cells. The median spontaneous firing rates for all classes of CT neurons were 4-8 spikes/s. CG neurons had primarily simple (60%) and concentric (9%) receptive fields, and none of these cells had complex receptive fields. CG simple cells were more narrowly tuned to both stimulus orientation and velocity than were complex CT cells, and most (85%) were directionally selective. Axonal conduction velocities of CG neurons (mean = 1.2 m/s) were much lower than those of CT neurons (mean = 6.4 m/s), and CG neurons that were visually unresponsive (23%) had lower axonal conduction velocities than did visually responsive CG neurons. Some visually unresponsive CG neurons (14%) responded with saccadic eye movements. The median spontaneous firing rates for all classes of CG neurons were less than 1 spike/s. All neurons synaptically activated via LGNd stimulation at latencies of less than 2.0 ms had receptive fields that were not orientation selective (89% motion/uniform, 11% concentric), whereas most cells with orientation-selective receptive fields had considerably longer synaptic latencies. Most short-latency motion/uniform neurons responded to electrical stimulation of the LGNd (and visual area II) with a high-frequency burst (500-900 Hz) of three or more spikes. Action potentials of these neurons were of short duration, thresholds of synaptic activation were low, and spontaneous firing rates were the highest seen in rabbit visual cortex. These properties are similar to those reported for interneurons in several regions in mammalian central nervous system. Nonvisual sensory stimuli that resulted in electroencephalographic arousal (hippocampal theta activity) had a profound effect on the visual responses of many visual cortical neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 16 (3) ◽  
pp. 541-555 ◽  
Author(s):  
YI ZHANG ◽  
RICHARD D. MOONEY ◽  
ROBERT W. RHOADES

Single-unit recording and micropressure ejection techniques were used to test the effects of norepinephrine (NE) on the responses of neurons in the superficial layers (the stratum griseum superficiale and stratum opticum) of the hamster's superior colliculus (SC). Application of NE suppressed visually evoked responses by ≥30% in 75% of 40 neurons tested and produced ≥30% augmentation of responses in only 5%. The decrement in response strength was mimicked by application of the α2 adrenoceptor agonist, p-aminoclonidine, the nonspecific β agonist, isoproterenol, and the β1 agonist, dobutamine. These agents had similar effects on responses evoked by electrical stimulation of the optic chiasm and visual cortex. The α1 agonist, methoxamine, augmented the light-evoked responses of 53% of 49 SC cells by ≥30%, but had little effect on responses evoked by electrical stimulation of optic chiasm or visual cortex. The effects of adrenergic agonists upon the glutamate-evoked responses of SC cells that were synaptically “isolated” by concurrent application of Mg2+ were similar to those obtained during visual stimulation. Analysis of effects of NE on visually evoked and background activity indicated that application of this amine did not significantly enhance signal-to-noise ratios for most superficial layer SC neurons, and signal-to-noise ratios were in some cases reduced. These results indicate that NE acts primarily through α2 and β1 receptors to suppress the visual responses of SC neurons. Activation of either of these receptors reduces the responses of SC neurons to either of their two major visual inputs as well as to direct stimulation by glutamate, and it would thus appear that these effects are primarily postsynaptic.


2021 ◽  
pp. 1-10
Author(s):  
Michihiro Osumi ◽  
Daisuke Shimizu ◽  
Yuki Nishi ◽  
Shu Morioka

Background: Patients with brachial plexus avulsion (BPA) usually experience phantom sensations and phantom limb pain (PLP) in the deafferented limb. It has been suggested that evoking the sensation of touch in the deafferented limb by stimulating referred sensation areas (RSAs) on the cheek or shoulder might alleviate PLP. However, feasible rehabilitation techniques using this approach have not been reported. Objective: The present study sought to examine the analgesic effects of simple electrical stimulation of RSAs in BPA patients with PLP. Methods: Study 1: Electrical stimulation of RSAs for 60 minutes was conducted for six BPA patients suffering from PLP to examine short-term analgesic effects. Study 2: A single case design experiment was conducted with two BPA patients to investigate whether electrical stimulation of RSAs was more effective for alleviating PLP than control electrical stimulation (electrical stimulation of sites on side opposite to the RSAs), and to elucidate the long-term effects of electrical stimulation of RSAs. Results: Study 1: Electrical stimulation of RSAs evoked phantom touch sensations in the deafferented limb, and significantly alleviated PLP (p <  0.05). Study 2: PLP was alleviated more after electrical stimulation on RSAs compared with control electrical stimulation (p <  0.05). However, the analgesic effects of electrical stimulation on RSAs were observed only in the short term, not in the long term (p >  0.05). Conclusions: Electrical stimulation of RSAs not only evoked phantom touch sensation but also alleviated PLP in the short term. The results indicate that electrical stimulation of RSAs may provide a useful practical rehabilitation technique for PLP. Future studies will be required to clarify the mechanisms underlying immediate PLP alleviation via electrical stimulation of RSAs.


Author(s):  
Andrew Talalla ◽  
Leo Bullara ◽  
Robert Pudenz

SUMMARY:A feasibility study for the development of a human visual prosthesis has led several workers to observe the effects of electrical stimulation of the human visual cortex. Experience with such stimulations of three normal-sighted patients is reported. The results confirm some of the findings of other workers, but do not show that multiple phosphenes were experienced by our patients, using strictly limited parameters of stimulation.


2020 ◽  
Author(s):  
Shumsuzzaman Khan

AbstractIn reward-based learning, synaptic eligibility traces are a well-defined theoretical solution for the conversion of initial co-activation of pre and postsynaptic neurons into long-term changes in synaptic strength by reward-linked neuromodulators. However, the types of neuromodulators involved in such a phenomenon in mouse visual cortex remain unknown. To characterize the Ex vivo condition, we used optogenetic stimulation of channelrhodopsin-(ChR2) expressing Cre/Ai32(ChR2-eYFP); Tph2-Cre/Ai32(ChR2-eYFP); Thi-Cre/Ai32(ChR2-eYFP) homozygous mice, which release acetylcholine, serotonin, and norepinephrine, respectively. With these mice it is possible to measure the transformation of eligibility traces into long-term changes by endogenous neuromodulators. Here we delineated that layer 2/3 neurons in the visual cortex showed no LTD after conditioning with paired-pulse low-frequency stimulation (ppLFS; 2Hz, 15 min). However, if conditioning was paired with acetylcholine, serotonin, or norepinephrine release upon 473 nm optical stimulation in brain slices, LTD occurs in every case. Thus, our data suggests a new pathway to connect the gap between stimulus and reward. Moreover, we found that stimulation by theta-glass or metal stimulators evoked IPSC traces with the same amplitudes but differences in decay kinetics, further questioning the appropriate use of stimulators in brain slices for evoking an event.


1983 ◽  
Vol 92 (6) ◽  
pp. 621-622 ◽  
Author(s):  
M. Portmann ◽  
J.-M. Aran ◽  
M. Nègrevergne ◽  
Y. Cazals

Electrical stimulation of the ear in humans was performed with an extracochlear electrode on the round window. With positive currents, suppression of tinnitus could be induced. With negative currents, auditory sensations were evoked. Since electrical stimulation with DC currents may be hazardous in the long term, it cannot yet be proposed for the suppression of tinnitus. However, electrically evoked hearing sensations with AC currents seem to be of definite interest for some totally deaf patients.


2018 ◽  
Vol 223 (5) ◽  
pp. 2073-2095 ◽  
Author(s):  
Isabelle Scheyltjens ◽  
Samme Vreysen ◽  
Chris Van den Haute ◽  
Victor Sabanov ◽  
Detlef Balschun ◽  
...  

2012 ◽  
Vol 9 (3) ◽  
pp. 036009 ◽  
Author(s):  
Rosemary Cicione ◽  
Mohit N Shivdasani ◽  
James B Fallon ◽  
Chi D Luu ◽  
Penny J Allen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document