Theory and numerics of layered shells with variationally embedded interlaminar stresses

2017 ◽  
Vol 326 ◽  
pp. 713-738 ◽  
Author(s):  
F. Gruttmann ◽  
G. Knust ◽  
W. Wagner
AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 1374-1382
Author(s):  
John A. Mitchell ◽  
J. N. Reddy

2000 ◽  
Vol 19 (1) ◽  
pp. 34-57 ◽  
Author(s):  
TONNY NYMAN ◽  
MAGNUS FRIBERG

2017 ◽  
Vol 7 (1) ◽  
pp. 93
Author(s):  
Yong Cao ◽  
Yunwen Feng ◽  
Xiaofeng Xue ◽  
Wenzhi Wang ◽  
Liang Bai

Author(s):  
László Takács ◽  
Ferenc Szabó

AbstractPolymer sandwich structures have high bending stiffness and strength and also low weight. Therefore, they are widely used in the transportation industry. In the conceptual design phase, it is essential to have a method to model the mechanical behavior of the sandwich and its adhesive joints accurately in full-vehicle scale to investigate different structure partitioning strategies. In this paper, a novel approach using finite element modeling is introduced. The sandwich panels are modeled with layered shells and the joint lines with general stiffness matrices. Stiffness parameters of the face-sheets and the core material are obtained via mechanical tests. Stiffness parameters of the joints are determined by using the method of Design of Experiments, where detailed sub-models of the joints serve as a reference. These models are validated with experimental tests of glass-fiber reinforced vinyl ester matrix composite sandwich structure with a foam core. By using two joint designs and three reference geometries, it is shown that the method is suitable to describe the deformation behavior in a full-vehicle scale with sufficient accuracy.


2001 ◽  
Author(s):  
Alexander P. Suvorov ◽  
George J. Dvorak

Abstract Several effects that fiber prestress may have on stress redistribution in the plies of composite laminates and in the phases of individual plies are illustrated. These include improvement of composite damage resistance under tensile mechanical loads, reduction/cancelation of interlaminar stresses at free edges of composite laminate subjected to thermomechanical loading, and stress relaxation in the matrix phase of viscoelastic composite laminates. Specific results are found for quasi-isotropic and cross-ply symmetric S-glass/epoxy and carbon/epoxy AS4/EPON 828 laminates.


Sign in / Sign up

Export Citation Format

Share Document