A MIXED FORMULATION FOR INTERLAMINAR STRESSES IN DROPPED-PLY LAMINATES

1993 ◽  
Author(s):  
PETER HARRISON ◽  
ERIC JOHNSON
Author(s):  
Sergio Caucao ◽  
Ivan Yotov

Abstract We propose and analyse a mixed formulation for the Brinkman–Forchheimer equations for unsteady flows. Our approach is based on the introduction of a pseudostress tensor related to the velocity gradient and pressure, leading to a mixed formulation where the pseudostress tensor and the velocity are the main unknowns of the system. We establish existence and uniqueness of a solution to the weak formulation in a Banach space setting, employing classical results on nonlinear monotone operators and a regularization technique. We then present well posedness and error analysis for semidiscrete continuous-in-time and fully discrete finite element approximations on simplicial grids with spatial discretization based on the Raviart–Thomas spaces of degree $k$ for the pseudostress tensor and discontinuous piecewise polynomial elements of degree $k$ for the velocity and backward Euler time discretization. We provide several numerical results to confirm the theoretical rates of convergence and illustrate the performance and flexibility of the method for a range of model parameters.


2016 ◽  
Vol 16 (4) ◽  
pp. 609-631 ◽  
Author(s):  
Immanuel Anjam ◽  
Dirk Pauly

AbstractThe results of this contribution are derived in the framework of functional type a posteriori error estimates. The error is measured in a combined norm which takes into account both the primal and dual variables denoted by x and y, respectively. Our first main result is an error equality for all equations of the class ${\mathrm{A}^{*}\mathrm{A}x+x=f}$ or in mixed formulation ${\mathrm{A}^{*}y+x=f}$, ${\mathrm{A}x=y}$, where the exact solution $(x,y)$ is in $D(\mathrm{A})\times D(\mathrm{A}^{*})$. Here ${\mathrm{A}}$ is a linear, densely defined and closed (usually a differential) operator and ${\mathrm{A}^{*}}$ its adjoint. In this paper we deal with very conforming mixed approximations, i.e., we assume that the approximation ${(\tilde{x},\tilde{y})}$ belongs to ${D(\mathrm{A})\times D(\mathrm{A}^{*})}$. In order to obtain the exact global error value of this approximation one only needs the problem data and the mixed approximation itself, i.e., we have the equality$\lvert x-\tilde{x}\rvert^{2}+\lvert\mathrm{A}(x-\tilde{x})\rvert^{2}+\lvert y-% \tilde{y}\rvert^{2}+\lvert\mathrm{A}^{*}(y-\tilde{y})\rvert^{2}=\mathcal{M}(% \tilde{x},\tilde{y}),$where ${\mathcal{M}(\tilde{x},\tilde{y}):=\lvert f-\tilde{x}-\mathrm{A}^{*}\tilde{y}% \rvert^{2}+\lvert\tilde{y}-\mathrm{A}\tilde{x}\rvert^{2}}$ contains only known data. Our second main result is an error estimate for all equations of the class ${\mathrm{A}^{*}\mathrm{A}x+ix=f}$ or in mixed formulation ${\mathrm{A}^{*}y+ix=f}$, ${\mathrm{A}x=y}$, where i is the imaginary unit. For this problem we have the two-sided estimate$\frac{\sqrt{2}}{\sqrt{2}+1}\mathcal{M}_{i}(\tilde{x},\tilde{y})\leq\lvert x-% \tilde{x}\rvert^{2}+\lvert\mathrm{A}(x-\tilde{x})\rvert^{2}+\lvert y-\tilde{y}% \rvert^{2}+\lvert\mathrm{A}^{*}(y-\tilde{y})\rvert^{2}\leq\frac{\sqrt{2}}{% \sqrt{2}-1}\mathcal{M}_{i}(\tilde{x},\tilde{y}),$where ${\mathcal{M}_{i}(\tilde{x},\tilde{y}):=\lvert f-i\tilde{x}-\mathrm{A}^{*}% \tilde{y}\rvert^{2}+\lvert\tilde{y}-\mathrm{A}\tilde{x}\rvert^{2}}$ contains only known data. We will point out a motivation for the study of the latter problems by time discretizations or time-harmonic ansatz of linear partial differential equations and we will present an extensive list of applications including the reaction-diffusion problem and the eddy current problem.


Sign in / Sign up

Export Citation Format

Share Document