thermomechanical loading
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 47)

H-INDEX

25
(FIVE YEARS 2)

2022 ◽  
Author(s):  
TA Sulaiman ◽  
AA Suliman ◽  
EA Mohamed ◽  
B Rodgers ◽  
A Altak ◽  
...  

SUMMARY Objective: Resin-based materials used in restorative dentistry are introduced at a fast pace with limited knowledge about their properties. Comparing properties of these materials from different restorative categories is lacking but can help the clinician in material selection. This study aimed to compare mechanical properties and wear resistance of bis-acryl-, composite-, and ceramic-resin restorative materials. Methods and Materials: Bisacryl-resin (Bis-R, LuxaCrown, DMG), composite-resin (Com-R, Filtek Supreme Ultra, 3M Oral Care), and ceramic-resin (Cer-R, Enamic, VITA Zahnfabrik) specimens were prepared for mechanical tests: fracture toughness (FT) with and without initial thermomechanical loading using a mastication simulator, flexural strength (FS), and flexural modulus (FM), compressive strength (CS), and volumetric wear loss measurement. The datasets for FT and wear resistance were each analyzed using two-way ANOVA followed by pairwise comparisons or Tukey testing as appropriate. The datasets for FS, FM, and CS were analyzed using one-way ANOVA followed by the Tukey test. Results: Analysis of FS, FM, and CS showed significant differences between materials, with all pairwise comparisons between materials showing significance. Analysis of FT resulted in a significant interaction between the material and treatment, with analysis of wear loss showing a significant interaction between the material and the number of cycles. Conclusions: Cer-R demonstrated superior FT, CS, and wear resistance compared to Bis-R and Comp-R materials. Fracture toughness of Bis-R increased after thermomechanical loading.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1929
Author(s):  
Jose Jimenez ◽  
Lakhdar Taleb

This study deals with Transformation-Induced Plasticity (TRIP) observed in the martensitic transformation of 35NCD16 ferritic steel. In this study, TRIP tests were carried out for two different cases: First, after only free dilatometric (FD) tests, which is used as the reference test for the considered applied stress; second, with TRIP tests being performed similarly to the first case (same thermal cycle, same applied stress) but with pre-thermomechanical loading histories applied. Such histories may be FD tests, TRIP tests, elastoplastic history, etc. The comparison between the results of TRIP test (a) and TRIP test (b) indicates if TRIP holds the memory of the applied loading histories. The current obtained results tell us that TRIP does not hold any significant memory. During the martensite à austenite transformation, the material may present recovery from strain hardening. Waiting for more details about the physical phenomena responsible for the absence of TRIP memory, one can point out the importance of this result as it enables one to use the same specimen for several TRIP tests. However, this result must be validated using other combinations of loading histories (such as multiaxial and cyclic, among others).


2021 ◽  
Vol 6 ◽  
pp. 55-65
Author(s):  
Kamila Storchak ◽  
◽  
Nina Yakovenko ◽  
Olga Polonevych ◽  
Irina Sribna ◽  
...  

The laser irradiation of metallic surfaces by intense heat sources is used for the generation of short probing pulses, which propagate into thin specimens and enable one to estimate their structure and mechanical properties within the framework of the classical acoustic approach. High thermal stresses and residual strains occur during the short-term irradiation of the surface of a construction by an energy source of high density. In the present work, we solve the axially symmetric problem of a half-space under thermomechanical loading. We take into account the influence of volume and inelastic characteristics of separate phases on the residual stress-strain state of the half-space. The statement of the problem includes: Cauchy relations, equations of motion, heat conduction equation, initial conditions, thermal and mechanical boundary conditions. The thermomechanical behavior of an isotropic material is described by the Bodner-Partom unified model of flow. The problem is solved with using the finite element technique. The numerical realization of our problem is performed with the help of step-by-step time integration. The equations of motion are integrated by the Newmark method. The residual stress-strain state is described using the method of numerical solution of the axisymmetric dynamic problem for a half-space under thermomechanical loading and the flow model. We established that microstructural transformations, which are taken into account due to the thermophase volume strain and dependence of inelastic characteristics of the material on the phase composition, significantly reduce residual inelastic strain and promote the appearance of compressive stresses. The three-zone region of residual stresses field formation is obtained.


2021 ◽  
pp. 117368
Author(s):  
Yang Liu ◽  
Said El Chamaa ◽  
Mark R. Wenman ◽  
Catrin M. Davies ◽  
Fionn P.E. Dunne

2021 ◽  
pp. 93-101
Author(s):  
Євген Олександрович Неманежин ◽  
Валерій Миколайович Івко ◽  
Юрій Іванович Торба

The subject of this article is the methods of research and evaluation of the properties of turbine blades of a cooled structure under thermomechanical loading. The purpose of the article is to review the world achievements of leading enterprises and research institutions in the issue of fatigue tests of turbine blades under complex loading (cyclic temperature exposure, dynamic and static loading), as well as an overview of the state of this topic at SE "Ivchenko-Progress" and suggestions for its further studying. As a result of the analysis of publications and scientific articles, it can be concluded that specialized research institutes and leading aircraft engine-building enterprises from the end of the twentieth century are studying the properties of turbine blades in the conditions of their operation as part of an engine. In world practice, there are calculated and experimental methods for thermomechanical testing of turbine blades. These tests are aimed at determining the most damaging loads, establishing the flight cycle modes at which these loads are recorded. As a result, it was found that the greatest threat to the strength of the turbine blades is carried by transient modes of engine operation, which are short in time (measured in seconds), but at which there is a change in the parameters of the temperature field, loads from axial and centrifugal forces. And it is the cycling of these parameters that leads to a decrease in the cyclic durability of the turbine blades, especially of the cooled structure (the presence of perforations, internal cooling channels, and other structural elements leads to a complication of the volumetric stress state of the blades). The article analyzes various crystallographic structures of blades and their relationship with the volumetric stress state; examples of studies that were carried out at SE "Ivchenko-Progress" and their results are given, which emphasize the need for further experiments in the field of assessing strength characteristics under complex cyclic loading. An example of an installation for testing blade joints and samples of gears is considered, which can be adapted for testing blades with three-component loading (temperature, dynamic loads, and imitation of the effect of centrifugal forces). It is concluded that when using exclusively computational methods, it is impossible to reliably estimate the level of stresses and their distribution since the calculations are limited by the boundary conditions, which are set according to the capabilities of a particular computational model. Summing up, it can be noted that it is advisable to start assessing the strength of blades under thermomechanical loading with several series of tests of samples of blade material to study the effect of temperature and power cycles of loads, the effect of the orientation of the load vector concerning the crystallographic orientation of the blade. It is noted that tests of full-scale blades under thermomechanical loading are also important since the features of the volumetric stress state of the material during real operation of the blades as part of an engine are not reproduced during testing of samples. The above entails the development of methods and specialized installations for thermomechanical testing.


Sign in / Sign up

Export Citation Format

Share Document