viscoelastic flow
Recently Published Documents


TOTAL DOCUMENTS

512
(FIVE YEARS 38)

H-INDEX

47
(FIVE YEARS 3)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 334
Author(s):  
Ekaterina Vachagina ◽  
Nikolay Dushin ◽  
Elvira Kutuzova ◽  
Aidar Kadyirov

The development of analytical methods for viscoelastic fluid flows is challenging. Currently, this problem has been solved for particular cases of multimode differential rheological equations of media state (Giesekus, the exponential form of Phan-Tien-Tanner, eXtended Pom-Pom). We propose a parametric method that yields solutions without additional assumptions. The method is based on the parametric representation of the unknown velocity functions and the stress tensor components as a function of coordinate. Experimental flow visualization based on the SIV (smoke image velocimetry) method was carried out to confirm the obtained results. Compared to the Giesekus model, the experimental data are best predicted by the eXtended Pom-Pom model.


2021 ◽  
Author(s):  
Emma Lang ◽  
Christian Pedersen ◽  
Anna Lang ◽  
Pernille Blicher ◽  
Arne Klungland ◽  
...  

Cellular quiescence is a state of reversible cell cycle arrest that is associated with tissue dormancy. Timely regulated entry into and exit from quiescence is important for processes such as tissue homeostasis, tissue repair, stem cell maintenance, developmental processes and immunity. Here we show that quiescent human keratinocyte monolayers contain an actinomyosin-based system that facilitates global viscoelastic flow upon serum-stimulated exit from quiescence. Mechanistically, serum exposure causes rapid amplification of pre-existing contractile sites leading to a burst in monolayer stress that subsequently drives monolayer fluidization. The stress magnitude after quiescence exit correlates with quiescence depth, and a critical stress level must be reached to overcome the cell sheet displacement barrier. The study shows that static quiescent cell monolayers are mechanically poised for motility and identifies global stress amplification as a mechanism for tissue fluidization.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1139
Author(s):  
Wu Zhang ◽  
Zihuang Wang ◽  
Meng Zhang ◽  
Jiahan Lin ◽  
Weiqian Chen ◽  
...  

This paper reports flow direction-dependent elastic instability in a symmetry-breaking microchannel. The microchannel consisted of a square chamber and a nozzle structure. A viscoelastic polyacrylamide solution was used for the instability demonstration. The instability was realized as the viscoelastic flow became asymmetric and unsteady in the microchannel when the flow exceeded a critical Weissenberg number. The critical Weissenberg number was found to be different for the forward-directed flow and the backward-directed flow in the microchannel.


2021 ◽  
Vol 118 (24) ◽  
pp. e2104790118
Author(s):  
San To Chan ◽  
Frank P. A. van Berlo ◽  
Hammad A. Faizi ◽  
Atsushi Matsumoto ◽  
Simon J. Haward ◽  
...  

Short liquid bridges are stable under the action of surface tension. In applications like electronic packaging, food engineering, and additive manufacturing, this poses challenges to the clean and fast dispensing of viscoelastic fluids. Here, we investigate how viscoelastic liquid bridges can be destabilized by torsion. By combining high-speed imaging and numerical simulation, we show that concave surfaces of liquid bridges can localize shear, in turn localizing normal stresses and making the surface more concave. Such positive feedback creates an indent, which propagates toward the center and leads to breakup of the liquid bridge. The indent formation mechanism closely resembles edge fracture, an often undesired viscoelastic flow instability characterized by the sudden indentation of the fluid’s free surface when the fluid is subjected to shear. By applying torsion, even short, capillary stable liquid bridges can be broken in the order of 1 s. This may lead to the development of dispensing protocols that reduce substrate contamination by the satellite droplets and long capillary tails formed by capillary retraction, which is the current mainstream industrial method for destabilizing viscoelastic liquid bridges.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1876
Author(s):  
Wei Wang ◽  
Linlin Wang

In order to assess the predictive capability of the S–MDCPP model, which may describe the viscoelastic behavior of the low-density polyethylene melts, a planar contraction flow benchmark problem is calculated in this investigation. A pressure-stabilized iterative fractional step algorithm based on the finite increment calculus (FIC) method is adopted to overcome oscillations of the pressure field due to the incompressibility of fluids. The discrete elastic viscous stress splitting (DEVSS) technique in combination with the streamline upwind Petrov-Galerkin (SUPG) method are employed to calculate the viscoelastic flow. The equal low-order finite elements interpolation approximations for velocity-pressure-stress variables can be applied to calculate the viscoelastic contraction flows for LDPE melts. The predicted velocities agree well with the experimental results of particle imagine velocity (PIV) method, and the pattern of principal stress difference calculated by the S-MDCPP model has good agreement with the results measured by the flow induced birefringence (FIB) device. Numerical and experimental results show that the S-MDCPP model is capable of accurately capturing the rheological behaviors of branched polymers in complex flow.


2021 ◽  
Vol 126 (5) ◽  
Author(s):  
Cameron C. Hopkins ◽  
Simon J. Haward ◽  
Amy Q. Shen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document