Spectral approximation for a nonlinear partial differential equation arising in thin film flow of a non-Newtonian fluid

Author(s):  
F. Talay Akyildiz ◽  
Dennis A. Siginer ◽  
Huseyin Kaplan
2018 ◽  
Vol 28 (7) ◽  
pp. 1596-1612 ◽  
Author(s):  
N. Faraz ◽  
Y. Khan

Purpose This paper aims to explore the variable properties of a flow inside the thin film of a unsteady Maxwell fluid and to analyze the effects of shrinking and stretching sheet. Design/methodology/approach The governing mathematical model has been developed by considering the boundary layer limitations. As a result of boundary layer assumption, a nonlinear partial differential equation is obtained. Later on, similarity transformations have been adopted to convert partial differential equation into an ordinary differential equation. A well-known homotopy analysis method is implemented to solve the problem. MATHEMATICA software has been used to visualize the flow behavior. Findings It is observed that variable viscosity does not have a significant effect on velocity field and temperature distribution either in shrinking or stretching case. It is noticed that Maxwell parameter has no dramatic effect on the flow of thin liquid fluid. It has been seen that heat flow increases by increasing the conductivity with temperature in both cases (shrinking/stretching). As a result, fluid temperature goes down when than delta = 0.05 than delta = 0.2. Originality/value To the best of authors’ knowledge, nobody has conducted earlier thin film flow of unsteady Maxwell fluid with variable fluid properties and comparison of shrinking and stretching sheet.


Author(s):  
Ram Dayal Pankaj ◽  
Arun Kumar ◽  
Chandrawati Sindhi

The Ritz variational method has been applied to the nonlinear partial differential equation to construct a model for travelling wave solution. The spatially periodic trial function was chosen in the form of combination of Jacobian Elliptic functions, with the dependence of its parameters


2013 ◽  
Vol 5 (04) ◽  
pp. 407-422 ◽  
Author(s):  
Matthew A. Beauregard ◽  
Qin Sheng

AbstractFinite difference computations that involve spatial adaptation commonly employ an equidistribution principle. In these cases, a new mesh is constructed such that a given monitor function is equidistributed in some sense. Typical choices of the monitor function involve the solution or one of its many derivatives. This straightforward concept has proven to be extremely effective and practical. However, selections of core monitoring functions are often challenging and crucial to the computational success. This paper concerns six different designs of the monitoring function that targets a highly nonlinear partial differential equation that exhibits both quenching-type and degeneracy singularities. While the first four monitoring strategies are within the so-calledprimitiveregime, the rest belong to a later category of themodifiedtype, which requires the priori knowledge of certain important quenching solution characteristics. Simulated examples are given to illustrate our study and conclusions.


Sign in / Sign up

Export Citation Format

Share Document