Source rock potential and depositional environment of Upper Cretaceous sedimentary rocks, Abu Gharadig Basin, Western Desert, Egypt: An integrated palynological, organic and inorganic geochemical study

2018 ◽  
Vol 186 ◽  
pp. 14-40 ◽  
Author(s):  
Bandar I. Ghassal ◽  
Ralf Littke ◽  
Haytham El Atfy ◽  
Sven Sindern ◽  
Grzegorz Scholtysik ◽  
...  
2021 ◽  
Author(s):  
Scott Hector ◽  
Karen Blake ◽  
Tim Elam

ABSTRACT Mount Diablo is flanked on its northeast side by a thick section of Late Cretaceous and Tertiary sedimentary rocks, which produced small hydrocarbon accumulations in the Los Medanos, Willow Pass, Mulligan Hill, and Concord gas fields. The first well was drilled in 1864, and today most of the active wells on the northeast flank are used for gas storage by Pacific Gas and Electric Company. These fields, which also include the Brentwood oil field, lie to the northeast of Mount Diablo and have produced 6.4 million cubic meters (225 billion cubic feet) of natural gas and over 57 million cubic meters (9.1 million barrels) of oil. The main reservoirs for the Sacramento Basin are sandstones in the Late Cretaceous and Paleogene section. The source rock there is primarily from the Upper Cretaceous Dobbins Shale, which began generation 75 m.y. ago, and the Winters Shale, which began generation 35 m.y. ago. The Livermore Basin is located on the western and southwestern sides of the mountain. The only commercial field in that basin is the small Livermore oil field. This field produces primarily from Miocene sandstones. The Livermore Basin is a Neogene basin that was syntectonically formed in the last few million years and continues to grow today. Studies of the black oils found in the Livermore field show that the source rock is likely the Eocene Nortonville Shale, though the Upper Cretaceous Moreno shale is also considered to be a possible source. The Livermore field has produced 12 million cubic meters of oil (1.9 million barrels).


Clay Minerals ◽  
2005 ◽  
Vol 40 (2) ◽  
pp. 191-203 ◽  
Author(s):  
F. Khormali ◽  
A. Abtahi ◽  
H. R. Owliaie

AbstractClay minerals of calcareous sedimentary rocks of southern Iran, part of the old Tethys area, were investigated in order to determine their origin and distribution, and to reconstruct the palaeoclimate of the area. Chemical analysis, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and thin-section studies were performed on the 16 major sedimentary rocks of the Fars and Kuhgiluyeh Boyerahmad Provinces.Kaolinite, smectite, chlorite, illite, palygorskite and illite-smectite interstratified minerals were detected in the rocks studied. The results revealed that detrital input is possibly the main source of kaolinite, smectite, chlorite and illite, whilein situneoformation during the Tertiary shallow saline and alkaline environment could be the dominant cause of palygorskite occurrences in the sedimentary rocks.The presence of a large amount of kaolinite in the Lower Cretaceous sediments and the absence or rare occurrence of chlorite, smectite, palygorskite and illite are in accordance with the warm and humid climate of that period. Smaller amounts of kaolinite and the occurrence of smectite in Upper Cretaceous sediments indicate the gradual shift from warm and humid to more seasonal climate. The occurrence of palygorskite and smectite and the disappearance of kaolinite in the late Palaeocene sediments indicate the increase in aridity which has probably continued to the present time.


Sign in / Sign up

Export Citation Format

Share Document