Probe active sites of heterogeneous electrocatalysts by X-ray absorption spectroscopy: From single atom to complex multi-element composites

2019 ◽  
Vol 14 ◽  
pp. 7-15 ◽  
Author(s):  
Hao Zhang ◽  
Xiaopeng Li ◽  
Zheng Jiang
2019 ◽  
Author(s):  
Lichen Bai ◽  
Chia-Shuo Hsu ◽  
Duncan Alexander ◽  
Hao Ming Chen ◽  
Xile Hu

Single atom catalysts exhibit well-defined active sites and potentially maximum atomic efficiency. However, they are unsuitable for reactions that benefit from bimetallic promotion such as the oxygen evolution reaction (OER) in alkaline medium. Here we show that a single atom Co precatalyst can be in-situ transformed into a Co-Fe double atom catalyst for OER. This catalyst exhibits one of the highest turnover frequencies among metal oxides. Electrochemical, microscopic, and spectroscopic data including those from operando X-ray absorption spectroscopy, reveal a dimeric Co-Fe moiety as the active site of the catalyst. This work demonstrates double-atom catalysis as a promising approach for the developed of defined and highly active OER catalysts.


Science ◽  
2019 ◽  
Vol 364 (6445) ◽  
pp. 1091-1094 ◽  
Author(s):  
Jun Gu ◽  
Chia-Shuo Hsu ◽  
Lichen Bai ◽  
Hao Ming Chen ◽  
Xile Hu

Currently, the most active electrocatalysts for the conversion of CO2 to CO are gold-based nanomaterials, whereas non–precious metal catalysts have shown low to modest activity. Here, we report a catalyst of dispersed single-atom iron sites that produces CO at an overpotential as low as 80 millivolts. Partial current density reaches 94 milliamperes per square centimeter at an overpotential of 340 millivolts. Operando x-ray absorption spectroscopy revealed the active sites to be discrete Fe3+ ions, coordinated to pyrrolic nitrogen (N) atoms of the N-doped carbon support, that maintain their +3 oxidation state during electrocatalysis, probably through electronic coupling to the conductive carbon support. Electrochemical data suggest that the Fe3+ sites derive their superior activity from faster CO2 adsorption and weaker CO absorption than that of conventional Fe2+ sites.


2000 ◽  
Vol 2 (15) ◽  
pp. 3473-3481 ◽  
Author(s):  
Th. Schedel-Niedrig ◽  
M. Hävecker ◽  
A. Knop-Gericke ◽  
R. Schlögl

2019 ◽  
Author(s):  
Lichen Bai ◽  
Chia-Shuo Hsu ◽  
Duncan Alexander ◽  
Hao Ming Chen ◽  
Xile Hu

Single atom catalysts exhibit well-defined active sites and potentially maximum atomic efficiency. However, they are unsuitable for reactions that benefit from bimetallic promotion such as the oxygen evolution reaction (OER) in alkaline medium. Here we show that a single atom Co precatalyst can be in-situ transformed into a Co-Fe double atom catalyst for OER. This catalyst exhibits one of the highest turnover frequencies among metal oxides. Electrochemical, microscopic, and spectroscopic data including those from operando X-ray absorption spectroscopy, reveal a dimeric Co-Fe moiety as the active site of the catalyst. This work demonstrates double-atom catalysis as a promising approach for the developed of defined and highly active OER catalysts.


Author(s):  
Yang Liu ◽  
Avik Halder ◽  
Soenke Seifert ◽  
Nicholas Marcella ◽  
Stefan Vajda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document