oxidase enzyme
Recently Published Documents


TOTAL DOCUMENTS

351
(FIVE YEARS 91)

H-INDEX

39
(FIVE YEARS 5)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 675
Author(s):  
M. Amin ◽  
B. M. Abdullah ◽  
S. J. Rowley-Neale ◽  
S. Wylie ◽  
A. J. Slate ◽  
...  

Carbon nanomaterials have gained significant interest over recent years in the field of electrochemistry, and they may be limited in their use due to issues with their difficulty in dispersion. Enzymes are prime components for detecting biological molecules and enabling electrochemical interactions, but they may also enhance multiwalled carbon nanotube (MWCNT) dispersion. This study evaluated a MWCNT and diamine oxidase enzyme (DAO)-functionalised screen-printed electrode (SPE) to demonstrate improved methods of MWCNT functionalisation and dispersion. MWCNT morphology and dispersion was determined using UV-Vis spectroscopy (UV-Vis) and scanning electron microscopy (SEM). Carboxyl groups were introduced onto the MWCNT surfaces using acid etching. MWCNT functionalisation was carried out using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-Hydroxysuccinimide (NHS), followed by DAO conjugation and glutaraldehyde (GA) crosslinking. Modified C-MWNCT/EDC-NHS/DAO/GA was drop cast onto SPEs. Modified and unmodified electrodes after MWCNT functionalisation were characterised using optical profilometry (roughness), water contact angle measurements (wettability), Raman spectroscopy and energy dispersive X-ray spectroscopy (EDX) (vibrational modes and elemental composition, respectively). The results demonstrated that the addition of the DAO improved MWCNT homogenous dispersion and the solution demonstrated enhanced stability which remained over two days. Drop casting of C-MWCNT/EDC-NHS/DAO/GA onto carbon screen-printed electrodes increased the surface roughness and wettability. UV-Vis, SEM, Raman and EDX analysis determined the presence of carboxylated MWCNT variants from their non-carboxylated counterparts. Electrochemical analysis demonstrated an efficient electron transfer rate process and a diffusion-controlled redox process. The modification of such electrodes may be utilised for the development of biosensors which could be utilised to support a range of healthcare related fields.


2021 ◽  
Vol 15 (1) ◽  
pp. 61-68
Author(s):  
Tarek A. El-Desouky ◽  
Hassan B.H. Hussain

Background: Wheat flour is an important food ingredient for humans, which is the basic ingredient of bread and other bakery products. Objective: This study aimed to assess the effect of adding Glucose Oxidase (GOX), and exposure to ozone gas on methyl-1, 4-benzoquinone (MBQ), and ethyl-1, 4-benzoquinone (EBQ) secreted by Tribolium castaneum in flour. Methods: The flour contaminated by MBQ and EBQ was treated with ozone gas at (10, 20, and 40 ppm) with exposure times (15, 30, and 45 min). Similarly, GOX was added to flour at (10, 15, and 20 ppm), leaving the dough for periods between 10 and 45 min after treatments. The MBQ and EBQ determined by HPLC, and the UV-Visible Spectrophotometer and Fourier Transform Infrared Spectroscopy (FTIR) were used to describe the changes that occurred in the main structure of EBQ after ozonation at 40 ppm for 45 min. Results: The results indicated that adding GOX enzyme to the flour at level 20 ppm degrade the MBQ to 13.7, 20.23, and 39.6 after 15, 30, and 45 min from mixing time, respectively. On the other hnad, the EBQ degrades to 13.6, 18.9, and 35.9%. In contrast, the percentages of degradation of MBQ and EBQ increases after ozonation at 40 ppm for 45min were 84.1 and 78.8%, respectively. The results obtained by UV–vis spectroscopy and FTIR reflect that many oxidation products formed as aldehydes, ketones, and carboxylic acids. Conclusion: In general, ozonation was a reliable treatment for the degradation of benzoquinone in flour.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7546
Author(s):  
Heba A. S. El-Nashar ◽  
Mariam I. Gamal El-Din ◽  
Lucian Hritcu ◽  
Omayma A. Eldahshan

Tyrosinase is a multifunctional copper-containing oxidase enzyme that initiates melanin synthesis in humans. Excessive accumulation of melanin pigments or the overexpression of tyrosinase may result in skin-related disorders such as aging spots, wrinkles, melasma, freckles, lentigo, ephelides, nevus, browning and melanoma. Nature expresses itself through the plants as a source of phytochemicals with diverse biological properties. Among these bioactive compounds, flavonoids represent a huge natural class with different categories such as flavones, flavonols, isoflavones, flavan-3-ols, flavanones and chalcones that display antioxidant and tyrosinase inhibitor activities with a diversity of mechanistic approaches. In this review, we explore the role of novel or known flavonoids isolated from different plant species and their participation as tyrosinase inhibitors reported in the last five years from 2016 to 2021. We also discuss the mechanistic approaches through the different studies carried out on these compounds, including in vitro, in vivo and in silico computational research. Information was obtained from Google Scholar, PubMed, and Science Direct. We hope that the updated comprehensive data presented in this review will help researchers to develop new safe, efficacious, and effective drug or skin care products for the prevention of and/or protection against skin-aging disorders.


Author(s):  
Heidari Alireza

In the current paper, galactose-oxidase enzyme is used as stabilization medium due to its more proficiency, ability for more accurate controlling the enzyme reaction, protecting against wasting of enzyme as well as simple and easy use and exchange of enzyme medium after performing some levels of surface modification and developing multi-walled carbon nanotubes (MWCNTs) on Berkelium plate. For better connecting and stabilizing the enzyme on the medium, the prepared medium is washed by high concentration sulfuric acid and nitric acid and a large volume of deionized water and for protecting enzyme from devastating effect of Berkelium and prohibiting them to become inactive, surface is covered with cystamine before stabilization. Regarding the large size of galactose-oxidase enzyme compared to surface of medium, a connective material with amid at one end and pyrine at the other end is used as transfer agent and for stabilizing this connection, the prepared medium is placed into dimethylformamide (DMF) solution for a couple of hours. Activity of stabilized enzyme at 460 (nm) wavelength recorded by spectroscope was depicted against time to evaluate its stability in various times. The prepared medium, which have a large amount of galactose-oxidase enzyme, can be used as electrode in sensors. Furthermore, galactose-oxidase electrochemical sensor is one of the best methods for detecting low amount of galactose and applying Berkelium colloidal nanoparticles as a supplementary material in the structure of biosensor can be effective for advancement its proficiency and optimum proficiency. On the other hand, in the current study, electrode biosensor entitled as modified carbon paste electrode with Berkelium colloidal nanoparticles (Bknano/CPE) is produced by carbon graphite powder, paraffin oil and Berkelium colloidal nanoparticles (24 nm) and it is compared with carbon paste electrode (CP). In semi-permeable membranes, a combination of 1 (ml) of 0.1 (M) phosphate buffer with specified pH and 10 (mg) of galactose-oxidase enzyme is placed around each electrode. In the same potential of 0.7 (V), biosensors are tested with galactose in concentration range of (0-1) (mM) and various amounts of pH (4,6,8) which lead to producing the maximum current and tracing galactose in pH=6 and concentration of 1 (M) as the optimum condition. Currentmetry induced from both biosensors are compared and it is confirmed that using Berkelium colloidal nanoparticles in the structure of (Bknano/CPE) electrode leads to increasing the conductivity and currentmerty of biosensor. In addition, qualitative and quantitative measurement of food components is of great importance due to high cost of traditional methods, in addition to tendency for more accurate and sensitive detecting of these components. galactose and glycerophospholipids are such compounds that they frequently measure. Various methods are used to detect these food elements. However, the necessity for accurate measurement of these two compounds with high sensitivity, especially for food health issue, leads to developing biological methods, especially biosensors. Among them, biosensors based on conductive polymer nanostructures, especially Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), have been recently interested due to their unique characteristics. The current paper aims to introduce and investigate the previously performed studies about Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)-based biosensors for detecting galactose and glycerophospholipids.


Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 497
Author(s):  
Cristian Ravariu ◽  
Catalin Corneliu Parvulescu ◽  
Elena Manea ◽  
Vasilica Tucureanu

The biosensors that work with field effect transistors as transducers and enzymes as bio-receptors are called ENFET devices. In the actual paper, a traditional MOS-FET transistor is cointegrated with a glucose oxidase enzyme, offering a glucose biosensor. The manufacturing process of the proposed ENFET is optimized in the second iteration. Above the MOS gate oxide, the enzymatic bioreceptor as the glucose oxidase is entrapped onto the nano-structured TiO2 compound. This paper proposes multiple details for cointegration between MOS devices with enzymatic biosensors. The Ti conversion into a nanostructured layer occurs by anodization. Two cross-linkers are experimentally studied for a better enzyme immobilization. The final part of the paper combines experimental data with analytical models and extracts the calibration curve of this ENFET transistor, prescribing at the same time a design methodology.


2021 ◽  
Author(s):  
Ivan Golovanov ◽  
Anton Leonov ◽  
Vladislav Lesnikov ◽  
Evgeny Pospelov ◽  
Kirill Frolov ◽  
...  

4,6,10-Trihydroxy-1,4,6,10-tetraazaadamantane (TAAD) has been shown to form a stable Fe(IV) complex having a diamantane cage structure, in which the metal center is coordinated by three oxygen atoms of the deprotonated ligand. The complex was characterized by X-ray, HRMS, NMR, FT-IR, Mössbauer spectroscopy and DFT calculations, which supported d4 configuration of iron. The Fe(IV)-TAAD complex showed excellent performance in dioxygen activation under mild conditions serving as a mimetic of the thiol oxidase enzyme. The nucleophilicity of the bridge-head nitrogen atom in TAAD provides a straightforward way for conjugation of Fe(IV)-TAAD complexes to various functional molecules. Using this approach, steroidal and peptide molecules having an iron(IV) label have been prepared for the first time. Also, the Fe(IV)-TAAD complex was covalently bounded to a polystyrene matrix and the resulting material was shown to serve as a heterogeneous catalyst for aerobic oxidation of thiols to disulfides.


Author(s):  
Muhammad Rafiullah Khan ◽  
Chongxing Huang ◽  
Hui Zhao ◽  
Haohe Huang ◽  
Liu Ren ◽  
...  

Abstract Background Enzymatic browning and microbial decay are the primary concerns that limit the postharvest life of longan fruit. These factors can be effectively prevented by sulfur dioxide (SO2) fumigation; however, due to the safety and regulatory issues of SO2, other alternatives must be tested. In this study, antioxidant and antimicrobial activities of thymol were determined against the pericarp browning and decay of longan fruit. A simple, cost-effective method was designed for its controlled release. Thymol vapors were obtained from the slurry prepared from 5 g of thymol in 5 mL of distilled water in a 180-mL glass jar, hermetically sealed and allowed for 24 h to accumulate the vapors in the headspace. Fruits were packed in polyethylene packages and fumigated with thymol through a septum. Non-fumigated fruits served as control and all the packages were stored at 25 ± 2 °C for 8 days. Results Thymol significantly (P ≤ 0.05) retarded pericarp browning (BI), delayed the decay incidence (DI) and maintained high color values of longan pericarp. Thymol also retained high total phenolic (TPC) and total flavonoid (TFC) contents, inhibited polyphenol oxidase (PPO) and peroxidase (POD) activities than those in control. A high coefficient of correlation of PPO with BI (r = 0.86), L* (r =  − 0.94), weight loss (r = 0.93), TPC (r =  − 0.77), TFC (r =  − 0.80), DI (r = 0.92) and many other quality and color parameters indicated the antioxidant efficacy of thymol. Longer shelf life of 8 days with good quality attributes was obtained in thymol-treated fruits than 6 days in control. Conclusion Thymol could be effectively used as a natural antioxidant for a wide range of fruits. Graphic abstract


Author(s):  
Hanaa El-Desoky ◽  
Ashraf Koleeb ◽  
Roqaya Bassuiny ◽  
Tarek Mohamed

Abstract Enhancement of the properties of glucose oxidase (GOx) enzyme is still receiving attention due to its extensive applications. Eight different fungal strains were isolated from soil and orange fruit samples for inexpensive GOx production. Penicillium notatum F-158 (P. notatum) strain produced a remarkable amount of GOx. Its culture condition was optimized for optimum GOx production. GOx was purified and its activity, stability and kinetic parameters were studied. An effective biosensor {GCE/[MWCNTs–Fc–GOx(FAD)–NF]} based on layer by layer immbolization of MWCNTs, aritificial ferrocene (Fc) redox mediator, extracted P. notatum GOx enzyme and nafion polymer (NF) on glassy carbon electrode (GCE) surface was developed for glucose determination. Fc acts as an electron relay between enzyme and MWCNTs/GCE. The synergy of MWCNTs and Fc enhances the electrocatalytic action of Fc to the enzymatic oxidation of glucose. Low potential (+0.3V) of Fc applied in amperometric measurements avoids interference of the main electroactive substances present in the real plasma samples. This biosensor showed broad linear ranges {2.80×10-4 to 14.99×10-3 M} and low detection limit (8.68×10-6 M) for glucose determination. The achieved glucose concentrations in six plasma samples are consistent with normal values in human blood indicating that such biosensor could be used clinically.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Farzana Diba ◽  
Md. Zaved Hossain Khan ◽  
Salman Zahir Uddin ◽  
Arif Istiaq ◽  
Md. Sadikur Rahman Shuvo ◽  
...  

AbstractArsenotrophic bacteria play an essential role in lowering arsenic contamination by converting toxic arsenite [As (III)] to less toxic and less bio-accumulative arsenate [As (V)]. The current study focused on the qualitative and electrocatalytic detection of the arsenite oxidation potential of an arsenite-oxidizing bacteria A. xylosoxidans BHW-15 (retrieved from As-contaminated tube well water), which could significantly contribute to arsenic detoxification, accumulation, and immobilization while also providing a scientific foundation for future electrochemical sensor development. The minimum inhibitory concentration (MIC) value for the bacteria was 15 mM As (III). Scanning Electron Microscopy (SEM) investigation validated its intracellular As uptake capacity and demonstrated a substantial association with the MIC value. During the stationary phase, the strain’s As (III) transformation efficiency was 0.0224 mM/h. Molecular analysis by real-time qPCR showed arsenite oxidase (aioA) gene expression increased 1.6-fold in the presence of As (III) compared to the untreated cells. The immobilized whole-cell also showed As (III) conversion up to 18 days. To analyze the electrochemical oxidation in water, we developed a modified GCE/P-Arg/ErGO-AuNPs electrode, which successfully sensed and quantified conversion of As (III) into As (V) by accepting electrons; implying a functional As oxidase enzyme activity in the cells. To the best of our knowledge, this is the first report on the electrochemical observation of the As-transformation mechanism with Achromobactersp. Furthermore, the current work highlighted that our isolate might be employed as a promising candidate for arsenic bioremediation, and information acquired from this study may be helpful to open a new window for the development of a cost-effective, eco-friendly biosensor for arsenic species detection in the future.


2021 ◽  
Vol 16 (11) ◽  
pp. 47-50
Author(s):  
D. Demir ◽  
C. Eken ◽  
E. Çelik ◽  
N. Alkan

Soil borne diseases cause significant losses on quantity and quality of many crop species annually. Rhizoctonia is a widespread and ecologically diverse soilborne fungus causing different types of diseases in many plant species including alfalfa (Medicago sativa). Rhizoctonia species have been traditionally identified based on the cell nuclear condition. Polyphenol oxidases (PPOs) are ubiquitous copper-containing enzymes that are widely occurring enzymes among plants. PPOs are involved in the oxidation of polyphenols into quinones (antimicrobial compounds) and lignification of plant cells that contribute to the formation of defense barriers against pathogens. The study was conducted with the aim to determine the effect of indigenous isolates of a multinucleate (Rhizoctonia solani AG-4) and nineteen isolates of binucleate Rhizoctonia on PPO activity in alfalfa (cv. Gea) seedling under in vitro conditions. The activity of PPO enzyme was determined in inoculated and uninoculated control alfalfa plants after ten days from inoculation. There was a significant increase in the activity of PPO after treatment of alfalfa seedling with isolates of Rhizoctonia. Among Rhizoctonia isolates, highest induction of PPO activity was recorded with pathogenic R. solani AG-4. In present study, increased amounts of PPO were also observed in plants that were challenged with Rhizoctonia spp. PPO has a role in catalyzing phenolic oxidation in limiting disease development. PPO may therefore be involved in induction of defense resistance against plant diseases.


Sign in / Sign up

Export Citation Format

Share Document