The SNARC effect does not imply a mental number line

Cognition ◽  
2008 ◽  
Vol 108 (1) ◽  
pp. 263-270 ◽  
Author(s):  
Seppe Santens ◽  
Wim Gevers
2021 ◽  
Author(s):  
Sara Aleotti ◽  
Stefano Massaccesi ◽  
Konstantinos Priftis

Small numbers are processed faster through left-sided than right-sided responses, whereas large numbers are processed faster through right-sided than left-sided responses (i.e., the Spatial-numerical Association of Response Codes [SNARC] effect). This effect suggests that small numbers are represented on the left side of space, whereas large numbers are represented on the right side of space, along a mental number line. The SNARC effect has been widely investigated along the horizontal Cartesian axis (i.e., left-right). Aleotti et al. (2020), however, have shown that the SNARC effect could also be observed along the vertical (i.e., small numbers-down side vs. large numbers-up side) and the sagittal axis (i.e., small numbers-near side vs. large numbers-far side). Here, we investigated whether the three Cartesian axes could interact to elicit the SNARC effect. Participants were asked to decide whether a centrally presented Arabic digit was odd or even. Responses were collected through an ad hoc-made response box on which the SNARC effect could be compatible for one, two, or three Cartesian axes. The results showed that the higher the number of SNARC-compatible Cartesian axes, the stronger the SNARC effect. We suggest that numbers are represented in a three-dimensional number space defined by interacting Cartesian axes.


2005 ◽  
Vol 5 (1-2) ◽  
pp. 165-190 ◽  
Author(s):  
Samar Zebian

AbstractThe current investigations coordinate math cognition and cultural approaches to numeric thinking to examine the linkages between numeric and spatial processes, and how these linkages are modified by the cultural artifact of writing. Previous research in the adult numeric cognition literature has shown that English monoliterates have a spatialised mental number line which is oriented from left-to-right with smaller magnitudes associated with the left side of space and larger magnitudes are associated with the right side of space. These associations between number and space have been termed the Spatial Numeric Association Response Code Effect (SNARC effect, Dehaene, 1992). The current study investigates the spatial orientation of the mental number line in the following groups: English monoliterates, Arabic monoliterates who use only the right-left writing system, Arabic-English biliterates, and illiterate Arabic speakers who only read numerals. Current results indicate, for the first time, a Reverse SNARC effect for Arabic monoliterates, such that the mental number line had a right-to-left directionality. Furthermore, a weakened Reverse SNARC was observed for Arabic-English biliterates, and no effect was observed among Illiterate Arabic speakers. These findings are especially notable since left-right biases are neurologically supported and are observed in pre-literate children regardless of which writing system is used by adults. The broader implications of how cultural artifacts affect basic numeric cognition will be discussed.


2018 ◽  
Vol 71 (8) ◽  
pp. 1761-1770 ◽  
Author(s):  
Elizabeth Y Toomarian ◽  
Edward M Hubbard

The ability to understand fractions is key to establishing a solid foundation in mathematics, yet children and adults struggle to comprehend them. Previous studies have suggested that these struggles emerge because people fail to process fraction magnitude holistically on the mental number line (MNL), focusing instead on fraction components. Subsequent studies have produced evidence for default holistic processing but examined only magnitude processing, not spatial representations. We explored the spatial representations of fractions on the MNL in a series of three experiments. Experiment 1 replicated Bonato et al.; 30 naïve undergraduates compared unit fractions (1/1-1/9) to 1/5, resulting in a reverse SNARC (Spatial-Numerical Association of Response Codes) effect. Experiment 2 countered potential strategic biases induced by the limited set of fractions used by Bonato et al. by expanding the stimulus set to include all irreducible, single-digit proper fractions and asked participants to compare them against 1/2. We observed a classic SNARC effect, completely reversing the pattern from Experiment 1. Together, Experiments 1 and 2 demonstrate that stimulus properties dramatically impact spatial representations of fractions. In Experiment 3, we demonstrated within-subjects reliability of the SNARC effect across both a fractions and whole number comparison task. Our results suggest that adults can indeed process fraction magnitudes holistically, and that their spatial representations occur on a consistent MNL for both whole numbers and fractions.


2018 ◽  
Vol 5 (8) ◽  
pp. 172362 ◽  
Author(s):  
Peter Kramer ◽  
Paola Bressan ◽  
Massimo Grassi

Interactions between the ways we process space, numbers and time may arise from shared and innate generic magnitude representations. Alternatively or concurrently, such interactions could be due to the use of physical magnitudes, like spatial extent, as metaphors for more abstract ones, like number and duration. That numbers might be spatially represented along a mental number line is suggested by the SNARC effect: faster left-side responses to small single digits, like 1 or 2, and faster right-side responses to large ones, like 8 or 9. Previously, we found that time estimation predicts mathematical intelligence and speculated that it may predict spatial ability too. Here, addressing this issue, we test—on a relatively large sample of adults and entirely within subjects—the relationships between (a) time: proficiency at producing and evaluating durations shorter than one second, (b) space: the ability to mentally rotate objects, (c) numbers: mathematical reasoning skills, and (d) space–number associations: the SNARC effect. Better time estimation was linked to greater mathematical intelligence and better spatial skills. Strikingly, however, stronger associations between space and numbers predicted worse mathematical intelligence and poorer time estimation.


2020 ◽  
Vol 3 (2) ◽  
pp. 143-162 ◽  
Author(s):  
Lincoln J. Colling ◽  
Dénes Szűcs ◽  
Damiano De Marco ◽  
Krzysztof Cipora ◽  
Rolf Ulrich ◽  
...  

The attentional spatial-numerical association of response codes (Att-SNARC) effect (Fischer, Castel, Dodd, & Pratt, 2003)—the finding that participants are quicker to detect left-side targets when the targets are preceded by small numbers and quicker to detect right-side targets when they are preceded by large numbers—has been used as evidence for embodied number representations and to support strong claims about the link between number and space (e.g., a mental number line). We attempted to replicate Experiment 2 of Fischer et al. by collecting data from 1,105 participants at 17 labs. Across all 1,105 participants and four interstimulus-interval conditions, the proportion of times the effect we observed was positive (i.e., directionally consistent with the original effect) was .50. Further, the effects we observed both within and across labs were minuscule and incompatible with those observed by Fischer et al. Given this, we conclude that we failed to replicate the effect reported by Fischer et al. In addition, our analysis of several participant-level moderators (finger-counting habits, reading and writing direction, handedness, and mathematics fluency and mathematics anxiety) revealed no substantial moderating effects. Our results indicate that the Att-SNARC effect cannot be used as evidence to support strong claims about the link between number and space.


2018 ◽  
Vol 27 (3) ◽  
pp. 437-452 ◽  
Author(s):  
Valter Prpić ◽  
Dražen Domijan

The Spatial-Musical Association of Response Codes (SMARC) effect consists in faster and more accurate responses to low (vs. high) pitched tones when they are executed in the bottom/left (vs. top/right) space. This phenomenon has many similarities with the Spatial-Numerical Association of Response Codes (SNARC) effect which, however, has been more extensively investigated and theoretically debated. The first theoretical account of the SNARC effect suggests the existence of a direct mapping between the position of a number on a mental number line and the external space of response execution. Conversely, following accounts claim that numbers are automatically categorized in two opposing categories (e.g., small vs. large) and then associated to response alternatives (left vs. right). A modified task, consisting in unimanual close/far responses relative to a reference key, has been employed to disentangle between the opposite theoretical accounts of the SNARC effect. However, this modified task has never been applied to pitch height and currently there are no specific theoretical accounts for the SMARC effect. The aim of this study is to fill this gap of knowledge. Contrary to what has been found for numbers, our data are more in line with the "direct mapping" account and suggests a linear representation of pitch height. Our data suggest that SNARC and SMARC effects might have different origins and might require different theoretical accounts.


2012 ◽  
Author(s):  
David Landy ◽  
Zachary J. Davis ◽  
Brian M. Guay ◽  
Megan L. Delaunay ◽  
Arthur Charlesworth ◽  
...  

2021 ◽  
pp. 174702182110087
Author(s):  
Lauren Aulet ◽  
Sami R Yousif ◽  
Stella Lourenco

Multiple tasks have been used to demonstrate the relation between numbers and space. The classic interpretation of these directional spatial-numerical associations (d-SNAs) is that they are the product of a mental number line (MNL), in which numerical magnitude is intrinsically associated with spatial position. The alternative account is that d-SNAs reflect task demands, such as explicit numerical judgments and/or categorical responses. In the novel ‘Where was The Number?’ task, no explicit numerical judgments were made. Participants were simply required to reproduce the location of a numeral within a rectangular space. Using a between-subject design, we found that numbers, but not letters, biased participants’ responses along the horizontal dimension, such that larger numbers were placed more rightward than smaller numbers, even when participants completed a concurrent verbal working memory task. These findings are consistent with the MNL account, such that numbers specifically are inherently left-to-right oriented in Western participants.


2012 ◽  
Vol 25 (0) ◽  
pp. 222 ◽  
Author(s):  
Michael J. Proulx ◽  
Achille Pasqualotto ◽  
Shuichiro Taya

The topographic representation of space interacts with the mental representation of number. Evidence for such number–space relations have been reported in both synaesthetic and non-synaesthetic participants. Thus far most studies have only examined related effects in sighted participants. For example, the mental number line increases in magnitude from left to right in sighted individuals (Loetscher et al., 2008, Curr. Biol.). What is unclear is whether this association arises from innate mechanisms or requires visual experience early in life to develop in this way. Here we investigated the role of visual experience for the left to right spatial numerical association using a random number generation task in congenitally blind, late blind, and blindfolded sighted participants. Participants orally generated numbers randomly whilst turning their head to the left and right. Sighted participants generated smaller numbers when they turned their head to the left than to the right, consistent with past results. In contrast, congenitally blind participants generated smaller numbers when they turned their head to the right than to the left, exhibiting the opposite effect. The results of the late blind participants showed an intermediate profile between that of the sighted and congenitally blind participants. Visual experience early in life is therefore necessary for the development of the spatial numerical association of the mental number line.


Sign in / Sign up

Export Citation Format

Share Document