scholarly journals The SNARC effect is associated with worse mathematical intelligence and poorer time estimation

2018 ◽  
Vol 5 (8) ◽  
pp. 172362 ◽  
Author(s):  
Peter Kramer ◽  
Paola Bressan ◽  
Massimo Grassi

Interactions between the ways we process space, numbers and time may arise from shared and innate generic magnitude representations. Alternatively or concurrently, such interactions could be due to the use of physical magnitudes, like spatial extent, as metaphors for more abstract ones, like number and duration. That numbers might be spatially represented along a mental number line is suggested by the SNARC effect: faster left-side responses to small single digits, like 1 or 2, and faster right-side responses to large ones, like 8 or 9. Previously, we found that time estimation predicts mathematical intelligence and speculated that it may predict spatial ability too. Here, addressing this issue, we test—on a relatively large sample of adults and entirely within subjects—the relationships between (a) time: proficiency at producing and evaluating durations shorter than one second, (b) space: the ability to mentally rotate objects, (c) numbers: mathematical reasoning skills, and (d) space–number associations: the SNARC effect. Better time estimation was linked to greater mathematical intelligence and better spatial skills. Strikingly, however, stronger associations between space and numbers predicted worse mathematical intelligence and poorer time estimation.

2018 ◽  
Vol 71 (8) ◽  
pp. 1761-1770 ◽  
Author(s):  
Elizabeth Y Toomarian ◽  
Edward M Hubbard

The ability to understand fractions is key to establishing a solid foundation in mathematics, yet children and adults struggle to comprehend them. Previous studies have suggested that these struggles emerge because people fail to process fraction magnitude holistically on the mental number line (MNL), focusing instead on fraction components. Subsequent studies have produced evidence for default holistic processing but examined only magnitude processing, not spatial representations. We explored the spatial representations of fractions on the MNL in a series of three experiments. Experiment 1 replicated Bonato et al.; 30 naïve undergraduates compared unit fractions (1/1-1/9) to 1/5, resulting in a reverse SNARC (Spatial-Numerical Association of Response Codes) effect. Experiment 2 countered potential strategic biases induced by the limited set of fractions used by Bonato et al. by expanding the stimulus set to include all irreducible, single-digit proper fractions and asked participants to compare them against 1/2. We observed a classic SNARC effect, completely reversing the pattern from Experiment 1. Together, Experiments 1 and 2 demonstrate that stimulus properties dramatically impact spatial representations of fractions. In Experiment 3, we demonstrated within-subjects reliability of the SNARC effect across both a fractions and whole number comparison task. Our results suggest that adults can indeed process fraction magnitudes holistically, and that their spatial representations occur on a consistent MNL for both whole numbers and fractions.


2011 ◽  
Vol 22 (12) ◽  
pp. 1511-1514 ◽  
Author(s):  
Anita Eerland ◽  
Tulio M. Guadalupe ◽  
Rolf A. Zwaan

In two experiments, we investigated whether body posture influences people’s estimation of quantities. According to the mental-number-line theory, people mentally represent numbers along a line with smaller numbers on the left and larger numbers on the right. We hypothesized that surreptitiously making people lean to the right or to the left would affect their quantitative estimates. Participants answered estimation questions while standing on a Wii Balance Board. Posture was manipulated within subjects so that participants answered some questions while they leaned slightly to the left, some questions while they leaned slightly to the right, and some questions while they stood upright. Crucially, participants were not aware of this manipulation. Estimates were significantly smaller when participants leaned to the left than when they leaned to the right.


2021 ◽  
Author(s):  
Sara Aleotti ◽  
Stefano Massaccesi ◽  
Konstantinos Priftis

Small numbers are processed faster through left-sided than right-sided responses, whereas large numbers are processed faster through right-sided than left-sided responses (i.e., the Spatial-numerical Association of Response Codes [SNARC] effect). This effect suggests that small numbers are represented on the left side of space, whereas large numbers are represented on the right side of space, along a mental number line. The SNARC effect has been widely investigated along the horizontal Cartesian axis (i.e., left-right). Aleotti et al. (2020), however, have shown that the SNARC effect could also be observed along the vertical (i.e., small numbers-down side vs. large numbers-up side) and the sagittal axis (i.e., small numbers-near side vs. large numbers-far side). Here, we investigated whether the three Cartesian axes could interact to elicit the SNARC effect. Participants were asked to decide whether a centrally presented Arabic digit was odd or even. Responses were collected through an ad hoc-made response box on which the SNARC effect could be compatible for one, two, or three Cartesian axes. The results showed that the higher the number of SNARC-compatible Cartesian axes, the stronger the SNARC effect. We suggest that numbers are represented in a three-dimensional number space defined by interacting Cartesian axes.


2017 ◽  
Author(s):  
Anita Eerland ◽  
Tulio M. Guadalupe ◽  
Rolf Antonius Zwaan

In two experiments, we investigated whether body posture influences people’s estimation of quantities. According to the mental-number-line theory, people mentally represent numbers along a line with smaller numbers on the left and larger numbers on the right. We hypothesized that surreptitiously making people lean to the right or to the left would affect their quantitative estimates. Participants answered estimation questions while standing on a Wii Balance Board. Posture was manipulated within subjects so that participants answered some questions while they leaned slightly to the left, some questions while they leaned slightly to the right, and some questions while they stood upright. Crucially, participants were not aware of this manipulation. Estimates were significantly smaller when participants leaned to the left than when they leaned to the right.


2019 ◽  
Vol 50 (2) ◽  
pp. 583-591 ◽  
Author(s):  
V. Simms ◽  
A. Karmiloff-Smith ◽  
E. Ranzato ◽  
J. Van Herwegen

Abstract Previous studies suggest that tasks dependent on the mental number line may be difficult for Williams Syndrome (WS) and Down Syndrome (DS) groups. However, few have directly assessed number line estimation in these groups. The current study assessed 28 WS, 25 DS and 25 typically developing (TD) participants in non-verbal intelligence, number familiarity, visuo-spatial skills and number line estimation. Group comparisons indicated no differences in number line estimation. However, the WS group displayed difficulties with visuo-spatial skills and the DS group displayed difficulties with number familiarity. Differential relationships between number line estimation and visuo-spatial/number familiarity skills were observed across groups. Data is discussed in the context of assessment of skills in neurodevelopmental disorders.


Cognition ◽  
2008 ◽  
Vol 108 (1) ◽  
pp. 263-270 ◽  
Author(s):  
Seppe Santens ◽  
Wim Gevers

2005 ◽  
Vol 5 (1-2) ◽  
pp. 165-190 ◽  
Author(s):  
Samar Zebian

AbstractThe current investigations coordinate math cognition and cultural approaches to numeric thinking to examine the linkages between numeric and spatial processes, and how these linkages are modified by the cultural artifact of writing. Previous research in the adult numeric cognition literature has shown that English monoliterates have a spatialised mental number line which is oriented from left-to-right with smaller magnitudes associated with the left side of space and larger magnitudes are associated with the right side of space. These associations between number and space have been termed the Spatial Numeric Association Response Code Effect (SNARC effect, Dehaene, 1992). The current study investigates the spatial orientation of the mental number line in the following groups: English monoliterates, Arabic monoliterates who use only the right-left writing system, Arabic-English biliterates, and illiterate Arabic speakers who only read numerals. Current results indicate, for the first time, a Reverse SNARC effect for Arabic monoliterates, such that the mental number line had a right-to-left directionality. Furthermore, a weakened Reverse SNARC was observed for Arabic-English biliterates, and no effect was observed among Illiterate Arabic speakers. These findings are especially notable since left-right biases are neurologically supported and are observed in pre-literate children regardless of which writing system is used by adults. The broader implications of how cultural artifacts affect basic numeric cognition will be discussed.


2021 ◽  
Vol 15 ◽  
Author(s):  
Arnaud Viarouge ◽  
Maria Dolores de Hevia

Numbers are mapped onto space from birth on, as evidenced by a variety of interactions between the processing of numerical and spatial information. In particular, larger numbers are associated to larger spatial extents (number/spatial extent mapping) and to rightward spatial locations (number/location mapping), and smaller numbers are associated to smaller spatial extents and leftward spatial locations. These two main types of number/space mappings (number/spatial extent and number/location mappings) are usually assumed to reflect the fact that numbers are represented on an internal continuum: the mental number line. However, to date there is very little evidence that these two mappings actually reflect a single representational object. Across two experiments in adults, we investigated the interaction between number/location and number/spatial extent congruency effects, both when numbers were presented in a non-symbolic and in a symbolic format. We observed a significant interaction between the two mappings, but only in the context of an implicit numerical task. The results were unaffected by the format of presentation of numbers. We conclude that the number/location and the number/spatial extent mappings can stem from the activation of a single representational object, but only in specific experimental contexts.


2020 ◽  
Vol 3 (2) ◽  
pp. 143-162 ◽  
Author(s):  
Lincoln J. Colling ◽  
Dénes Szűcs ◽  
Damiano De Marco ◽  
Krzysztof Cipora ◽  
Rolf Ulrich ◽  
...  

The attentional spatial-numerical association of response codes (Att-SNARC) effect (Fischer, Castel, Dodd, & Pratt, 2003)—the finding that participants are quicker to detect left-side targets when the targets are preceded by small numbers and quicker to detect right-side targets when they are preceded by large numbers—has been used as evidence for embodied number representations and to support strong claims about the link between number and space (e.g., a mental number line). We attempted to replicate Experiment 2 of Fischer et al. by collecting data from 1,105 participants at 17 labs. Across all 1,105 participants and four interstimulus-interval conditions, the proportion of times the effect we observed was positive (i.e., directionally consistent with the original effect) was .50. Further, the effects we observed both within and across labs were minuscule and incompatible with those observed by Fischer et al. Given this, we conclude that we failed to replicate the effect reported by Fischer et al. In addition, our analysis of several participant-level moderators (finger-counting habits, reading and writing direction, handedness, and mathematics fluency and mathematics anxiety) revealed no substantial moderating effects. Our results indicate that the Att-SNARC effect cannot be used as evidence to support strong claims about the link between number and space.


Sign in / Sign up

Export Citation Format

Share Document