scholarly journals Wettability of bio-coke by coal tar pitch for its use in carbon anodes

Author(s):  
Xianai Huang ◽  
Duygu Kocaefe ◽  
Yasar Kocaefe ◽  
Dipankar Bhattacharyay
Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 923
Author(s):  
Bowen Chen ◽  
Hicham Chaouki ◽  
Donald Picard ◽  
Julien Lauzon-Gauthier ◽  
Houshang Alamdari ◽  
...  

The Hall-Héroult process uses prebaked carbon anodes as electrodes. The anode’s quality plays a crucial role in the efficiency of the aluminium production process. During the baking process, the anode undergoes complex physicochemical transformations. Thus, the production of high-quality anodes depends, among others, on the efficient control of their baking process. This paper aims to investigate the evolution of some physical properties of the anode paste mixture during the baking process. These properties include the mass loss fraction, real and apparent densities, the ratio of apparent volume, the permeability, and porosities. For this purpose, experiments consisting of thermogravimetric analysis, dilatometry, air permeability, and helium-pycnometric measurements were carried out. The anode permeability at high temperatures was linked to the air permeability through a permeability correlator due to experimental limitations. Moreover, the real density at high temperatures was estimated by combining real densities of the coal tar pitch and coke aggregates. Different porosities, such as the open porosity and the closed porosity related to the pitch binder, were estimated by taking the permeability at high temperatures into account. In this context, the effect of the permeability correlator, which was introduced to link the permeability at high temperatures to the air permeability, was investigated through a sensitivity analysis. These results allow an estimation of the shrinking index, a new variable introduced to reflect the baking level of the anode mixture, which is linked to the volatile that is released in both open and closed pores. Afterwards, the pore pressure inside closed pores in the coal tar pitch was estimated. The obtained results highlight some new insights related to the baking process of the anode mixture. Moreover, they pave the way for better modeling of the thermo-chemo-mechanical behavior of anodes at high temperatures.


1981 ◽  
Vol 31 (1) ◽  
pp. 535-540 ◽  
Author(s):  
John A. G. Drake ◽  
Derry W. Jones ◽  
Clifford R. Mason

1998 ◽  
Vol 13 (2) ◽  
pp. 302-307 ◽  
Author(s):  
H. Kajiura ◽  
Y. Tanabe ◽  
E. Yasuda ◽  
A. Kaiho ◽  
I. Shiota ◽  
...  

Matrix microstructure of a pitch-based carbon-carbon composite was controlled by an iodine treatment. Coal-tar pitch having the softening point of 101 °C was used as a matrix precursor. The iodine treatment was carried out on a pitch-impregnated specimen at 90 °C for 3–20 h. The specimen was carbonized at 800 °C and graphitized at 2000–3000 °C. The carbon yield increased from 73% to 93% by the iodine treatment. Microstructures of carbonized specimens changed from a flow type texture to a mosaic type one by the iodine treatment. The microstructural development to graphitic structure was suppressed by the iodine treatment.


Sign in / Sign up

Export Citation Format

Share Document