Influence of edge velocity on flame front position and displacement speed in turbulent premixed combustion

2014 ◽  
Vol 161 (10) ◽  
pp. 2614-2626 ◽  
Author(s):  
Sina Kheirkhah ◽  
Ömer L. Gülder
Author(s):  
Shiyou Yang ◽  
Eric Pomraning ◽  
Ming Jia

This work presents a turbulent premixed combustion modeling approach which is based on chemical kinetics. In this approach, the smallest length scales are of the order of 0.1–1.0 mm for typical engine simulations with a Reynolds-averaged Navier–Stokes turbulence model and, after adaptive mesh refinement technology is used to consider the magnitude of the subgrid field, the Reynolds-averaged Navier–Stokes turbulent flow field can be well resolved. For solution of the flame front, an artificially thickened laminar flame concept is introduced to balance the computational accuracy and the computational cost. Around the artificially thickened laminar flame front, a special grid resolution strategy is designed, i.e. using much finer resolution in the normal direction of the flame front and typical adaptive mesh refinement resolution in the other two perpendicular directions. Then, chemical kinetics can be applied to the chemistry process which occurs in the flame front. To use this chemical-kinetics-based turbulent premixed combustion modeling approach better, a good chemical kinetics mechanism is very important. For this reason a practical primary-reference-fuel chemical kinetics mechanism is improved and validated in present work. The newly improved mechanism resolves several issues in the existing mechanisms, including unrealistically fast autoignition reactions and limited laminar flame speed validation. After reoptimization of those laminar-flame-speed-related reactions, the new mechanism can correctly compute the laminar flame speeds for a wide range of Ford spark ignition engines and for various operating conditions. Using this combustion modeling approach together with the new mechanism, simulations of the combustion and the emissions of several spark ignition engines for typical operating conditions were carried out. The simulated in-cylinder pressures, the simulated burn rates, and the simulated emissions including the brake specific carbon monoxide emissions, the nitrogen oxide emissions, and the unburned hydrocarbon emissions are compared with the experimental data, and very good agreement is found without tuning any model constants.


2018 ◽  
Vol 35 (4) ◽  
pp. 365-372
Author(s):  
Jong-Chan Kim ◽  
Won-Chul Jung ◽  
Ji-Seok Hong ◽  
Hong-Gye Sung

Abstract The effects of turbulent burning velocities in a turbulent premixed combustion simulation with a G-equation are investigated using the 3D LES technique. Two turbulent burning velocity models – Kobayashi model, which takes into account the burning velocity pressure effect, and the Pitsch model, which considers the flame regions on the premixed flame structure – are implemented. An LM6000 combustor is employed to validate the turbulent premixed combustion model. The results show that the flame structures in front of the injector have different shapes in each model because of the different turbulent burning velocities. These different flame structures induce changes in the entire combustor flow field, including in the recirculation zone. The dynamic mode decomposition (DMD) method and linear acoustic analysis provide the dominant acoustic mode.


Sign in / Sign up

Export Citation Format

Share Document