flame structures
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 18)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Chao Xu ◽  
Muhsin Ameen ◽  
Pinaki Pal ◽  
Sibendu Som

Abstract Partial fuel stratification (PFS) is a promising fuel injection strategy to stabilize lean premixed combustion in spark-ignition (SI) engines. PFS creates a locally stratified mixture by injecting a fraction of the fuel, just before spark timing, into the engine cylinder containing homogeneous lean fuel/air mixture. This locally stratified mixture, when ignited, results in complex flame structure and propagation modes similar to partially premixed flames, and allows for faster and more stable flame propagation than a homogeneous lean mixture. This study focuses on understanding the detailed flame structures associated with PFS-assisted lean premixed combustion. First, a two-dimensional direct numerical simulation (DNS) is performed using detailed fuel chemistry, experimental pressure trace, and realistic initial conditions mapped from a prior engine large-eddy simulation (LES), replicating practical lean SI operating conditions. DNS results suggest that conventional triple flame structures are prevalent during the initial stage of flame kernel growth. Both premixed and non-premixed combustion modes are present with the premixed mode contributing dominantly to the total heat release. Detailed analysis reveals the effects of flame stretch and fuel pyrolysis on the flame displacement speed. Based on the DNS findings, the accuracy of a hybrid G-equation/well-stirred reactor (WSR) combustion model is assessed for PFS-assisted lean operation in the LES context. The G-equation model qualitatively captures the premixed branches of the triple flame, while the WSR model predicts the non-premixed branch of the triple flame. Finally, potential needs for improvements to the hybrid G-equation/WSR modeling approach are discussed.


2021 ◽  
Author(s):  
Tong Su ◽  
Yuzhen Lin ◽  
Chi Zhang ◽  
Xiao Han

Abstract The flow fields, emission levels, and static stability characteristics were investigated experimentally under various air split ratios (ASR, the ratio of the pilot stage air mass flow rate to the total air mass flow rate) at a fixed equivalence ratio of 0.8 of both main and pilot stages in a premixed centrally-staged swirl flame. The flame structures were captured by a CH* chemiluminescence high-speed camera and the corresponding results were processed by Abel deconvolution. Besides, the flow fields obtained by using planar Particle Image Velocimetry (PIV) technique were combined with flame structures to make a better study on the aerodynamic structures of the centrally-staged swirl flames. The emission levels of NOx and CO were measured by a gas analyzer. The stability boundaries and flame structures at different equivalence ratios under three ASRs were also studied. It is found that the size of the reacting primary recirculation zone (PRZ) becomes larger as more air is distributed to the pilot stage. This can be explained by the fact that the majority of the pilot fluid participates in the formation of the PRZ and also as a result of a stronger penetrability of the pilot jet. Moreover, the NOx emission levels increase while CO levels decrease, which is because of the longer residence time of the radicals within a larger PRZ and less impingement of the main flame on the combustor liner. Finally, the stability boundary is extended, and the total blowout equivalence ratio was decreased as the air split ratio increases, which demonstrates the flame stabilization effect of the pilot flame. In brief, the above findings can be a help to choose the appropriate air split ratio in the early design stage of the centrally-staged aero-engine combustors.


Author(s):  
BV Lakshmi ◽  

Soft-sediment deformation structures were identified along Nandakini River valley near Chamoli village of Garhwal Lesser Himalaya. The deformation, in each outcrop, is restricted to a single stratigraphic layer bounded by undeformed flat-lying layers, eliminating the influence of slope failure. The structures are multiple liquefaction features like sand dikes, flame structures, pear-drop disturbance and downward warping of beds. The preferred interpretation is that the deformations resulted from earthquake-induced liquefaction and their existence adjacent to the Nandaprayag Fault can be related to episodic seismicity that occurred along this fault. However, more data and dating technique is needed to constrain the timing and distance to the causative seismic source. It is possible that more than one earthquake has effected the deformations.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6744
Author(s):  
Yang Yang ◽  
Zhijian Yu

The recirculation zone and the swirl flame behavior can be influenced by the burner exit shape, and few studies have been made into this structure. Large eddy simulation was carried out on 16 cases to distinguish critical geometry factors. The time series of the heat release rate were decomposed using seasonal-trend decomposition procedure to exclude the effect of short physical time. Dynamic mode decomposition (DMD) was performed to separate flame structures. The frequency characteristics extracted from the DMD modes were compared with those from the flame transfer functions. Results show that the flame cases can be categorized into three types, all of which are controlled by a specific geometric parameter. Except one type of flame, they show nonstationary behavior by the Kwiatkowski–Phillips–Schmidt–Shin test. The frequency bands corresponding to the coherent structures are identified. The flame transfer function indicates that the flame can respond to external excitation in the frequency range 100–300 Hz. The DMD modes capture the detailed flame structures. The higher frequency bands can be interpolated as the streamwise vortices and shedding vortices. The DMD modes, which correspond to the bands of flame transfer functions, can be estimated as streamwise vortices at the edges.


2020 ◽  
Vol 104 ◽  
pp. 105950 ◽  
Author(s):  
Yongchao Sun ◽  
Mingbo Sun ◽  
Jiajian Zhu ◽  
Dan Zhao ◽  
Qian Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document