task partitioning
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 27)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Laha Ale ◽  
Scott King ◽  
Ning Zhang ◽  
Abdul Sattar ◽  
Janahan Skandaraniyam

<div> Mobile Edge Computing (MEC) has been regarded as a promising paradigm to reduce service latency for data processing in Internet of Things, by provisioning computing resources at network edge. In this work, we jointly optimize the task partitioning and computational power allocation for computation offloading in a dynamic environment with multiple IoT devices and multiple edge servers. We formulate the problem as a Markov decision process with constrained hybrid action space, which cannot be well handled by existing deep reinforcement learning (DRL) algorithms. Therefore, we develop a novel Deep Reinforcement Learning called Dirichlet Deep Deterministic Policy Gradient (D3PG), which </div><div>is built on Deep Deterministic Policy Gradient (DDPG) to solve the problem. The developed model can learn to solve multi-objective optimization, including maximizing the number of tasks processed before expiration and minimizing the energy cost and service latency. More importantly, D3PG can effectively deal with constrained distribution-continuous hybrid action space, where the distribution variables are for the task partitioning and offloading, while the continuous variables are for computational frequency control. Moreover, the D3PG can address many similar issues in MEC and general reinforcement learning problems. Extensive simulation results show that the proposed D3PG outperforms the state-of-art methods.</div><div> Mobile Edge Computing (MEC) has been regarded as a promising paradigm to reduce service latency for data processing in Internet of Things, by provisioning computing resources at network edge. In this work, we jointly optimize the task partitioning and computational power allocation for computation offloading in a dynamic environment with multiple IoT devices and multiple edge servers. We formulate the problem as a Markov decision process with constrained hybrid action space, which cannot be well handled by existing deep reinforcement learning (DRL) algorithms. Therefore, we develop a novel Deep Reinforcement Learning called Dirichlet Deep Deterministic Policy Gradient (D3PG), which is built on Deep Deterministic Policy Gradient (DDPG) to solve the problem. The developed model can learn to solve multi-objective optimization, including maximizing the number of tasks processed before expiration and minimizing the energy cost and service latency. More importantly, D3PG can effectively deal with constrained distribution-continuous hybrid action space, where the distribution variables are for the task partitioning and offloading, while the continuous variables are for computational frequency control. Moreover, the D3PG can address many similar issues in MEC and general reinforcement learning problems. Extensive simulation results show that the proposed D3PG outperforms the state-of-art methods.</div>


2021 ◽  
Author(s):  
Laha Ale ◽  
Scott King ◽  
Ning Zhang ◽  
Abdul Sattar ◽  
Janahan Skandaraniyam

<div> Mobile Edge Computing (MEC) has been regarded as a promising paradigm to reduce service latency for data processing in Internet of Things, by provisioning computing resources at network edge. In this work, we jointly optimize the task partitioning and computational power allocation for computation offloading in a dynamic environment with multiple IoT devices and multiple edge servers. We formulate the problem as a Markov decision process with constrained hybrid action space, which cannot be well handled by existing deep reinforcement learning (DRL) algorithms. Therefore, we develop a novel Deep Reinforcement Learning called Dirichlet Deep Deterministic Policy Gradient (D3PG), which </div><div>is built on Deep Deterministic Policy Gradient (DDPG) to solve the problem. The developed model can learn to solve multi-objective optimization, including maximizing the number of tasks processed before expiration and minimizing the energy cost and service latency. More importantly, D3PG can effectively deal with constrained distribution-continuous hybrid action space, where the distribution variables are for the task partitioning and offloading, while the continuous variables are for computational frequency control. Moreover, the D3PG can address many similar issues in MEC and general reinforcement learning problems. Extensive simulation results show that the proposed D3PG outperforms the state-of-art methods.</div><div> Mobile Edge Computing (MEC) has been regarded as a promising paradigm to reduce service latency for data processing in Internet of Things, by provisioning computing resources at network edge. In this work, we jointly optimize the task partitioning and computational power allocation for computation offloading in a dynamic environment with multiple IoT devices and multiple edge servers. We formulate the problem as a Markov decision process with constrained hybrid action space, which cannot be well handled by existing deep reinforcement learning (DRL) algorithms. Therefore, we develop a novel Deep Reinforcement Learning called Dirichlet Deep Deterministic Policy Gradient (D3PG), which is built on Deep Deterministic Policy Gradient (DDPG) to solve the problem. The developed model can learn to solve multi-objective optimization, including maximizing the number of tasks processed before expiration and minimizing the energy cost and service latency. More importantly, D3PG can effectively deal with constrained distribution-continuous hybrid action space, where the distribution variables are for the task partitioning and offloading, while the continuous variables are for computational frequency control. Moreover, the D3PG can address many similar issues in MEC and general reinforcement learning problems. Extensive simulation results show that the proposed D3PG outperforms the state-of-art methods.</div>


Computers ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 10
Author(s):  
Manal A. El Sayed ◽  
El Sayed M. Saad ◽  
Rasha F. Aly ◽  
Shahira M. Habashy

Multi-core processors have become widespread computing engines for recent embedded real-time systems. Efficient task partitioning plays a significant role in real-time computing for achieving higher performance alongside sustaining system correctness and predictability and meeting all hard deadlines. This paper deals with the problem of energy-aware static partitioning of periodic, dependent real-time tasks on a homogenous multi-core platform. Concurrent access of the tasks to shared resources by multiple tasks running on different cores induced a higher blocking time, which increases the worst-case execution time (WCET) of tasks and can cause missing the hard deadlines, consequently resulting in system failure. The proposed blocking-aware-based partitioning (BABP) algorithm aims to reduce the overall energy consumption while avoiding deadline violations. Compared to existing partitioning strategies, the proposed technique achieves more energy-saving. A series of experiments test the capabilities of the suggested algorithm compared to popular heuristics partitioning algorithms. A comparison was made between the most used bin-packing algorithms and the proposed algorithm in terms of energy consumption and system schedulability. Experimental results demonstrate that the designed algorithm outperforms the Worst Fit Decreasing (WFD), Best Fit Decreasing (BFD), and Similarity-Based Partitioning (SBP) algorithms of bin-packing algorithms, reduces the energy consumption of the overall system, and improves schedulability.


Author(s):  
Zhipeng Cheng ◽  
Minghui Min ◽  
Minghui Liwang ◽  
Lianfen Huang ◽  
Zhibin Gao

Sign in / Sign up

Export Citation Format

Share Document