Analysis of particle induced dislocation structures using three-dimensional dislocation dynamics and strain gradient plasticity

2012 ◽  
Vol 52 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Hyung-Jun Chang ◽  
Anaïs Gaubert ◽  
Marc Fivel ◽  
Stéphane Berbenni ◽  
Olivier Bouaziz ◽  
...  
Author(s):  
John Hirth

Abstract Throughout his career, Zbib was innovative, originating models in seminal papers that anticipated areas of subsequent increased interest. These include strain-gradient plasticity, discrete dislocation dynamics, multiscale modeling, Arrays of Somigliana ring dislocations, and nanoscale plasticity. We comment here on these aspects of his work. Many of the papers in this volume represent applications of these ideas.


1999 ◽  
Vol 67 (1) ◽  
pp. 105-111 ◽  
Author(s):  
J. Y. Chen ◽  
Y. Huang ◽  
K. C. Hwang ◽  
Z. C. Xia

A systematic approach is proposed to derive the governing equations and boundary conditions for strain gradient plasticity in plane-stress deformation. The displacements, strains, stresses, strain gradients and higher-order stresses in three-dimensional strain gradient plasticity are expanded into a power series of the thickness h in the out-of-plane direction. The governing equations and boundary conditions for plane stress are obtained by taking the limit h→0. It is shown that, unlike in classical plasticity theories, the in-plane boundary conditions and even the order of governing equations for plane stress are quite different from those for plane strain. The kinematic relations, constitutive laws, equilibrium equation, and boundary conditions for plane-stress strain gradient plasticity are summarized in the paper. [S0021-8936(00)02301-1]


2009 ◽  
Vol 50 (3) ◽  
pp. 407-420
Author(s):  
ROGER YOUNG

AbstractAn analytic solution is developed for the one-dimensional dissipational slip gradient equation first described by Gurtin [“On the plasticity of single crystals: free energy, microforces, plastic strain-gradients”, J. Mech. Phys. Solids48 (2000) 989–1036] and then investigated numerically by Anand et al. [“A one-dimensional theory of strain-gradient plasticity: formulation, analysis, numerical results”, J. Mech. Phys. Solids53 (2005) 1798–1826]. However we find that the analytic solution is incompatible with the zero-sliprate boundary condition (“clamped boundary condition”) postulated by these authors, and is in fact excluded by the theory. As a consequence the analytic solution agrees with the numerical results except near the boundary. The equation also admits a series of higher mode solutions where the numerical result corresponds to (a particular case of) the fundamental mode. Anand et al. also established that the one-dimensional dissipational gradients strengthen the material, but this proposition only holds if zero-sliprate boundary conditions can be imposed, which we have shown cannot be done. Hence the possibility remains open that dissipational gradient weakening may also occur.


Sign in / Sign up

Export Citation Format

Share Document