particle size effect
Recently Published Documents


TOTAL DOCUMENTS

467
(FIVE YEARS 87)

H-INDEX

54
(FIVE YEARS 6)

Author(s):  
Alireza Bahramian

Abstract The effect of particle size on the pressure profiles and flow regimes of the bed containing TiO2 microparticles (MPs) was investigated in a fluidized bed. The fluidization behavior of particles with mean diameters, d p , of 170, 200, 225, and 300 μm at different gas velocities, U g , was investigated both experimental and computational viewpoints. A computational fluid dynamic (CFD) model was developed by the Eulerian–Eulerian approach to evaluate the sensitivity of the Syamlal–O’Brien, and Gidaspow drag models on the predicted results of the bed pressure profiles. The results showed that with increasing particle size, the amplitude of pressure fluctuations increases and the type of flow regime in the bed tended from bubbling to slugging flow regime. The error analysis showed that the use of the Gidaspow model led to more accurate results than the Syamlal–O’Brien model in predicting the bed pressure drop and pressure fluctuations in the slugging flow regime. However, the Syamlal–O’Brien model was more suitable for predicting the pressure profiles in the bubbling flow regime. The results were more suitable for the bed containing particles of 300 μm than the beds with d p  ≤ 225 μm. The highest and lowest deviations between the experimental data and simulation outputs were obtained at U g of 0.295 and 0.650 m/s, respectively. The findings confirmed that the mutual effects existed between the d p pressure profiles, and the type of flow regimes in the bed.


2021 ◽  
pp. 126265
Author(s):  
Octavio García-Depraect ◽  
Raquel Lebrero ◽  
Sara Rodriguez-Vega ◽  
Sergio Bordel ◽  
Fernando Santos-Beneit ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexander Genest ◽  
Joaquín Silvestre-Albero ◽  
Wen-Qing Li ◽  
Notker Rösch ◽  
Günther Rupprechter

AbstractThe selectivity of 1-butene hydrogenation/isomerization on Pd catalysts is known to be particle size dependent. Here we show that combining well-defined model catalysts, atmospheric pressure reaction kinetics, DFT calculations and microkinetic modeling enables to rationalize the particle size effect based on the abundance and the specific properties of the contributing surface facets.


Author(s):  
P. Sáez ◽  
A. Rodríguez ◽  
J. M. Gómez ◽  
C. Paramio ◽  
C. Fraile ◽  
...  

AbstractIn this paper, the gallium (III) ions’ adsorption onto protonated clinoptilolite (H-CLP) was investigated both in batch and fixed-bed column experiments. Regarding batch experiments, the influence of some parameters such as adsorbent dosage, size particle, and temperature was studied, determining that a dosage of 10 g/L for an initial pollutant concentration of 40 mg/L leads to a removal percentage over 85% regardless of particle size and temperature. On the other hand, adsorption of gallium onto H-CPL is an endothermic and spontaneous process in the studied temperature range, concluding that the maximum adsorption capacity was 16 mg/g for 60 °C. Concerning to the effect of the presence of other cations in solution, such as Na+, K+, or Ca2+, gallium adsorption capacity only drops by 20%, although the initial concentration of other cations in the solution is 50 times higher than gallium concentration. This means that clinoptilolite has a high affinity for gallium which can be very favorable for further selectivity tests. A crucial factor for this high selectivity could be the protonation of clinoptilolite which allows working without modifying the pH of the aqueous solution with acid. In the fixed-bed experiments, breakthrough curves were obtained, and the effect of operation variables was determined. A breakpoint value of 254 min for 64 g of adsorbent and flow rate of 9.0 mL/min (7.0 BV/h) were obtained, when treating a pollutant volume of 33 BV. Additionally, the breakthrough curves were fitted to different models to study the particle size effect, being the best fit corresponding to the Adams–Bohart model. This fact confirmed the influence of particle size on adsorption kinetics. Graphical Abstract


Author(s):  
H. Arabnejad ◽  
H. Uddin ◽  
S.A. Shirazi ◽  
S. Talya ◽  
K. Panda

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Sangmo Kim ◽  
Thi My Huyen Nguyen ◽  
Rui He ◽  
Chung Wung Bark

AbstractPiezoelectric nanogenerators (PNGs) have been studied as renewable energy sources. PNGs consisting of organic piezoelectric materials such as poly(vinylidene fluoride) (PVDF) containing oxide complex powder have attracted much attention for their stretchable and high-performance energy conversion. In this study, we prepared a PNG combined with PVDF and lanthanum-modified bismuth titanate (Bi4−XLaXTi3O12, BLT) ceramics as representative ferroelectric materials. The inserted BLT powder was treated by high-speed ball milling and its particle size reduced to the nanoscale. We also investigated the effect of particle size on the energy-harvesting performance of PNG without polling. As a result, nano-sized powder has a much larger surface area than micro-sized powder and is uniformly distributed inside the PNG. Moreover, nano-sized powder-mixed PNG generated higher power energy (> 4 times) than the PNG inserted micro-sized powder.


Sign in / Sign up

Export Citation Format

Share Document