2D finite element modeling of misorientation dependent anisotropic grain growth in polycrystalline materials: Level set versus multi-phase-field method

2015 ◽  
Vol 104 ◽  
pp. 108-123 ◽  
Author(s):  
Y. Jin ◽  
N. Bozzolo ◽  
A.D. Rollett ◽  
M. Bernacki
Author(s):  
L Shi ◽  
SA Alexandratos ◽  
NP O’Dowd

Engineering components operating at high temperature often fail due to the initiation and growth of cracks in the heat-affected zone adjacent to a weld. Understanding the effects of microstructural evolution in the heat-affected zone is important in order to predict and control the final properties of welded joints. This study presents a combined finite element method and phase field method for simulation of austenite grain growth in the heat-affected zone of a tempered martensite (P91) steel weld. The finite element method is used to determine the thermal history of the heat-affected zone during gas tungsten arc welding of a P91 steel plate. Then, the calculated thermal history is included in a phase field model to simulate grain growth at various positions in the heat-affected zone. The predicted mean grain size and grain distribution match well with experimental data for simulated welds from the literature. The work lays the foundation for optimising the process parameters in welding of P91 and other ferritic/martensitic steels in order to control the final heat-affected zone microstructure.


MRS Bulletin ◽  
2008 ◽  
Vol 33 (6) ◽  
pp. 597-602 ◽  
Author(s):  
G. Spanos ◽  
D.J. Rowenhorst ◽  
A.C. Lewis ◽  
A.B. Geltmacher

AbstractThis article first provides a brief review of the status of the subfield of three-dimensional (3D) materials analyses that combine serial sectioning, electron backscatter diffraction (EBSD), and finite element modeling (FEM) of materials microstructures, with emphasis on initial investigations and how they led to the current state of this research area. The discussions focus on studies of the mechanical properties of polycrystalline materials where 3D reconstructions of the microstructure—including crystallographic orientation information—are used as input into image-based 3D FEM simulations. The authors' recent work on a β-stabilized Ti alloy is utilized for specific examples to illustrate the capabilities of these experimental and modeling techniques, the challenges and the solutions associated with these methods, and the types of results and analyses that can be obtained by the close integration of experiments and simulations.


Sign in / Sign up

Export Citation Format

Share Document