Finding and characterization of an energetically favorable cubic Ce0.75Zr0.25O2 solid solution using genetic algorithm and density functional theory

2017 ◽  
Vol 138 ◽  
pp. 219-224 ◽  
Author(s):  
Jason Kim ◽  
Dae-Hee Kim ◽  
Ji-Su Kim ◽  
Yeong-Cheol Kim
2021 ◽  
pp. 138675
Author(s):  
Manal Abed Mohammed ◽  
Heider A. Abdulhussein ◽  
Muhsen Abood Muhsen Al-ibadi ◽  
Rajesh Kumar Raju ◽  
Roy L. Johnston

2011 ◽  
Vol 89 (6) ◽  
pp. 671-687 ◽  
Author(s):  
Pablo J. Bruna ◽  
Friedrich Grein ◽  
Jack Passmore

The structures and stabilities of chainlike (CO2)n (n = 2–6) polycarbonates, where adjacent C atoms are linked by C–O–C bonds, were investigated at the density functional theory (DFT) level (B3PW91/6–311G(2d,p)), including dicarboxylic dianions, [CnO2n+1]2–, and the corresponding acids, [CnO2n+1]H2, and Li salts, [CnO2n+1]Li2. At equilibrium, the most stable systems have Cs, C2, or C2v symmetries. In the gas phase, these dianions are generally metastable with respect to spontaneous ejection of one electron, yet in the presence of counterions they become stabilized, for example, as [CnO2n+1]2–(Li+)2 ion pairs. [CnO2n+1]2– linkages are also stabilized as dicarboxylic acids, [CnO2n+1]H2; we find the latter to have equilibrium conformations of higher symmetry than previously reported in the literature. To the best of our knowledge, none of the [CnO2n+1]X2 (X = Li or H) compounds with n ≥ 2 have been reported in the experimental literature (albeit, the alkyl esters C2O5R2 and C3O7R2 are commercially available). All CO bonds in C2O5X2 to C6O13X2 have single- to double-bond character (≈140–118 pm), indicating that the [CnO2n+1] moieties are held together by strong chemical forces (in contrast to the weakly bound complexes (CO2)n and (CO2)n–, n > 1). Vibrational frequencies were calculated to ensure all conformations were true minima. The IR and Raman intensities show that the high intensity C=O stretching modes (1750 ± 100 cm–1) will help in the spectral characterization of these compounds. Solvation calculations using the polarizable continuum model (PCM) find that C2O52– can be formed via CO32– + CO2 as well as CO3–[Formula: see text], each reaction having ΔG298 < 0 in practically all solvents. This result confirms the experimentally observed large solubility of CO2(g) in molten carbonates, CO3M2 (M = Li, Na, or K). In contrast, starting with n = 2, the reactions [CnO2n+1]2– + CO2 do not proceed spontaneously in any solvent (ΔG298 > 0).


2010 ◽  
Vol 17 (4) ◽  
pp. 701-708
Author(s):  
Diana Barraza-Jiménez ◽  
Manuel Alberto Flores-Hidalgo ◽  
Donald H. Galvan ◽  
Esteban Sánchez ◽  
Daniel Glossman-Mitnik

2003 ◽  
Vol 57 (8) ◽  
pp. 970-976 ◽  
Author(s):  
M. Bolboaca ◽  
T. Stey ◽  
A. Murso ◽  
D. Stalke ◽  
W. Kiefer

Fourier transform (FT) Raman and infrared spectroscopy in combination with density functional theory calculations have been applied to the vibrational characterization of the dimeric zinc diphenylphosphanyl(trimethylsilyl)amide complex [(Me3Si)2NZnPh2PNSiMe3]2 and the ortho-metallated species [Li( o-C6H4PPh2NSiMe3)]2·Et2O in relation to their parent starting materials diphenylphosphanyl (trimethylsilyl)amine Ph2P–N(H)SiMe3 and iminophosphorane Ph3P=NSiMe3. The spectroscopic changes evidenced in the spectra were correlated with the structural parameters in order to provide insight as to what extent the P–N bond is affected by the coordination to the metal center. The employment of density functional theory (DFT) calculations in addition to these spectroscopic methods offers the possibility of predicting whether the Lewis-basic imido nitrogen atom is involved in coordination not only in the solid state, but also in the gas phase.


Sign in / Sign up

Export Citation Format

Share Document