Structures and electronic properties of halogenated Au(III) phthalocyanine AuPcX (X = Cl, Br): A Density Functional Theoretical Study

2018 ◽  
Vol 152 ◽  
pp. 262-267 ◽  
Author(s):  
Guoliang Dai ◽  
Lei Chen ◽  
Fengming Xie
2015 ◽  
Vol 1131 ◽  
pp. 123-127
Author(s):  
Ampaiwan Marutaphan ◽  
Panida Lorwongtragool ◽  
Chatchawal Wongchoosuk

In this paper, we have reported a theoretical study of the geometric and electronic structures of EDOT:SS oligomers based on semi-empirical Austin model1 (AM1) method and density functional theory at B3LYP/3-21G* level. The effects of polymer chain length of both EDOT and SS on structural and electronic properties including bond length, bond angle, binding distance, charge, the highest occupied orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and energy gap have been studied from the optimized oligomers which were built by varying repeating unit of monomer as n = 1, 2, 3 and 4. The results show that AM1 is not appropriate for geometry optimization of EDOT:SS system comparing to B3LYP/3-21G* level. The binding distance between H atom on EDOT and O atom on SS tends to close together with the average distance of 2.21 Å. The most positive charges locate at sulfur atoms on EDOT and EDOT:SS. The electrical conductivity of EDOT, SS and EDOT:SS increases when polymer chain is extended.


Author(s):  
Ricardo V. K. Rizzon ◽  
Zélia M. da Costa Ludwig ◽  
Ricardo V. K. Rizzon ◽  
Lucas Modesto da Costa ◽  
Valdemir Ludwig

Through this work, we systematically studied the structural, vibrational and electronic properties of the fundamental state of the isolated thyroxine(3,5,3’,5-tetraiodothyronine). The minimum energy structures and properties were obtained using the Density Functional Theory (DFT). Our simulation results were compared with experimental results, including infra-red and Raman spectroscopy with an emphasis on the properties of iodine atoms. The UV-vis spectrum calculated in this work is the first result of this model for the thyroxine molecule.


Sign in / Sign up

Export Citation Format

Share Document