Quantum Mechanics/Molecular Mechanics (QM/MM) applied to tribology: Real-time monitoring of tribochemical reactions of water at graphene edges

2020 ◽  
Vol 173 ◽  
pp. 109400
Author(s):  
Paolo Restuccia ◽  
Mauro Ferrario ◽  
Maria Clelia Righi
2020 ◽  
Vol 124 (25) ◽  
pp. 13688-13694 ◽  
Author(s):  
Stefan Peeters ◽  
Paolo Restuccia ◽  
Sophie Loehlé ◽  
Benoit Thiebaut ◽  
M. C. Righi

2006 ◽  
Vol 175 (4S) ◽  
pp. 521-521
Author(s):  
Motoaki Saito ◽  
Tomoharu Kono ◽  
Yukako Kinoshita ◽  
Itaru Satoh ◽  
Keisuke Satoh

2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-1175-Pr3-1182 ◽  
Author(s):  
M. Losurdo ◽  
A. Grimaldi ◽  
M. Giangregorio ◽  
P. Capezzuto ◽  
G. Bruno

2014 ◽  
Author(s):  
Rozaimi Ghazali ◽  
◽  
Asiah Mohd Pilus ◽  
Wan Mohd Bukhari Wan Daud ◽  
Mohd Juzaila Abd Latif ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 101-LB
Author(s):  
ABHINAV BHUSHAN ◽  
SONALI J. KARNIK

2020 ◽  
Author(s):  
Zenghui Yang

Quantum mechanics/molecular mechanics (QM/MM) methods partition the system into active and environmental regions and treat them with different levels of theory, achieving accuracy and efficiency at the same time. Adaptive-partitioning (AP) QM/MM methods allow on-the-fly changes to the QM/MM partitioning of the system. Many of the available energy-based AP-QM/MM methods partition the system according to distances to pre-chosen centers of active regions. For such AP-QM/MM methods, I develop an adaptive-center (AC) method that allows on-the-fly determination of the centers of active regions according to general geometrical or potential-related criteria, extending the range of application of energy-based AP-QM/MM methods to systems where active regions may occur or vanish during the simulation.


Author(s):  
Walker M. Jones ◽  
Aaron G. Davis ◽  
R. Hunter Wilson ◽  
Katherine L. Elliott ◽  
Isaiah Sumner

We present classical molecular dynamics (MD), Born-Oppenheimer molecular dynamics (BOMD), and hybrid quantum mechanics/molecular mechanics (QM/MM) data. MD was performed using the GPU accelerated pmemd module of the AMBER14MD package. BOMD was performed using CP2K version 2.6. The reaction rates in BOMD were accelerated using the Metadynamics method. QM/MM was performed using ONIOM in the Gaussian09 suite of programs. Relevant input files for BOMD and QM/MM are available.


2017 ◽  
Vol 4 (4) ◽  
pp. 20
Author(s):  
KAVITHA T. ◽  
PREETHI D. LAVANYA ◽  
SARANYA S. ◽  
ANCY EVERT P.M. JONAH ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document