Optimal deep learning approaches and healthcare big data analytics for mobile networks toward 5G

2021 ◽  
Vol 95 ◽  
pp. 107376
Author(s):  
Denis A. Pustokhin ◽  
Irina V. Pustokhina ◽  
Poonam Rani ◽  
Vineet Kansal ◽  
Mohamed Elhoseny ◽  
...  
2018 ◽  
Vol 9 (4) ◽  
pp. 33-51
Author(s):  
Rostom Mennour ◽  
Mohamed Batouche

Big data analytics and deep learning are nowadays two of the most active research areas in computer science. As the data is becoming bigger and bigger, deep learning has a very important role to play in data analytics, and big data technologies will give it huge opportunities for different sectors. Deep learning brings new challenges especially when it comes to large amounts of data, the volume of datasets has to be processed and managed, also data in various applications come in a streaming way and deep learning approaches have to deal with this kind of applications. In this paper, the authors propose two novel approaches for discriminative deep learning, namely LS-DSN, and StreamDSN that are inspired from the deep stacking network algorithm. Two versions of the gradient descent algorithm were used to train the proposed algorithms. The experiment results have shown that the algorithms gave satisfying accuracy results and scale well when the size of data increases. In addition, StreamDSN algorithm have been applied to classify beats of ECG signals and provided good promising results.


Author(s):  
Dharmendra Singh Rajput ◽  
T. Sunil Kumar Reddy ◽  
Dasari Naga Raju

In recent years, big data analytics is the major research area where the researchers are focused. Complex structures are trained at each level to simplify the data abstractions. Deep learning algorithms are one of the promising researches for automation of complex data extraction from large data sets. Deep learning mechanisms produce better results in machine learning, such as computer vision, improved classification modelling, probabilistic models of data samples, and invariant data sets. The challenges handled by the big data are fast information retrieval, semantic indexing, extracting complex patterns, and data tagging. Some investigations are concentrated on integration of deep learning approaches with big data analytics which pose some severe challenges like scalability, high dimensionality, data streaming, and distributed computing. Finally, the chapter concludes by posing some questions to develop the future work in semantic indexing, active learning, semi-supervised learning, domain adaptation modelling, data sampling, and data abstractions.


Author(s):  
Rostom Mennour ◽  
Mohamed Batouche

Big data analytics and deep learning are nowadays two of the most active research areas in computer science. As the data is becoming bigger and bigger, deep learning has a very important role to play in data analytics, and big data technologies will give it huge opportunities for different sectors. Deep learning brings new challenges especially when it comes to large amounts of data, the volume of datasets has to be processed and managed, also data in various applications come in a streaming way and deep learning approaches have to deal with this kind of applications. In this paper, the authors propose two novel approaches for discriminative deep learning, namely LS-DSN, and StreamDSN that are inspired from the deep stacking network algorithm. Two versions of the gradient descent algorithm were used to train the proposed algorithms. The experiment results have shown that the algorithms gave satisfying accuracy results and scale well when the size of data increases. In addition, StreamDSN algorithm have been applied to classify beats of ECG signals and provided good promising results.


2020 ◽  
pp. 1016-1029
Author(s):  
Dharmendra Singh Rajput ◽  
T. Sunil Kumar Reddy ◽  
Dasari Naga Raju

In recent years, big data analytics is the major research area where the researchers are focused. Complex structures are trained at each level to simplify the data abstractions. Deep learning algorithms are one of the promising researches for automation of complex data extraction from large data sets. Deep learning mechanisms produce better results in machine learning, such as computer vision, improved classification modelling, probabilistic models of data samples, and invariant data sets. The challenges handled by the big data are fast information retrieval, semantic indexing, extracting complex patterns, and data tagging. Some investigations are concentrated on integration of deep learning approaches with big data analytics which pose some severe challenges like scalability, high dimensionality, data streaming, and distributed computing. Finally, the chapter concludes by posing some questions to develop the future work in semantic indexing, active learning, semi-supervised learning, domain adaptation modelling, data sampling, and data abstractions.


Author(s):  
Venkatesan Manian ◽  
Vadivel P.

This chapter analyzes the Internet of Things (IoT), its history, and its tools in brief. This chapter also explores the contribution of IoT towards the recent development in infrastructure development of nations represented as smart world. This chapter also discuss the contribution of IoT towards big data analytics era. This chapter also briefly introduce the smart bio world and how it is made possible with the internet of things. This chapter also introduces the machine learning approaches and also discusses the contribution of Internet of Thing for this machine learning. This chapter also briefly introduces some tools used for IoT developments.


2018 ◽  
Vol 7 (1.8) ◽  
pp. 164 ◽  
Author(s):  
S Kusuma ◽  
D Kasi Viswanath

The internet of things & Big data analytics in eLearning brings tremendous challenges & opportunities to educational institutions & students. In recent trends, the growth of Pervasive computing, Social media, evolving IoT capabilities, technologies such as cloud computing, and big data and analytics are improving the core values of teaching and conducting research but also instilling a new digital culture and developing an IoT-centric society. The primary purpose of this paper is to provide an impact of IoT & Big data analytics in the area of E-learning and study on different E-learning approaches. 


Sign in / Sign up

Export Citation Format

Share Document