Unsteady free surface flow induced by a line sink in a fluid of finite depth

2008 ◽  
Vol 37 (3) ◽  
pp. 236-249 ◽  
Author(s):  
T.E. Stokes ◽  
G.C. Hocking ◽  
L.K. Forbes
2020 ◽  
Vol 61 ◽  
pp. C75-C88
Author(s):  
Shaymaa Mukhlif Shraida ◽  
Graeme Hocking

We consider the outflow of water from the peak of a triangular ridge into a channel of finite depth. Solutions are computed for different flow rates and bottom angles. A numerical method is used to compute the flow from the source for small values of flow rate and it is found that there is a maximum flow rate beyond which steady solutions do not seem to exist. Limiting flows are computed for each geometrical configuration. One application of this work is as a model of saline water being returned to the ocean after desalination. References Craya, A. ''Theoretical research on the flow of nonhomogeneous fluids''. La Houille Blanche, (1):22–55, 1949. doi:10.1051/lhb/1949017 Dun, C. R. and Hocking, G. C. ''Withdrawal of fluid through a line sink beneath a free surface above a sloping boundary''. J. Eng. Math. 29:1–10, 1995. doi:10.1007/bf00046379 Hocking, G. ''Cusp-like free-surface flows due to a submerged source or sink in the presence of a flat or sloping bottom''. ANZIAM J. 26:470–486, 1985. doi:10.1017/s0334270000004665 Hocking, G. C. and Forbes, L. K. ''Subcritical free-surface flow caused by a line source in a fluid of finite depth''. J. Eng. Math. 26:455-466, 1992. doi:10.1007/bf00042763 Hocking, G. C. ''Supercritical withdrawal from a two-layer fluid through a line sink", J. Fluid Mech. 297:37–47, 1995. doi:10.1017/s0022112095002990 Hocking, G. C., Nguyen, H. H. N., Forbes, L. K. and Stokes,T. E. ''The effect of surface tension on free surface flow induced by a point sink''. ANZIAM J., 57:417–428, 2016. doi:10.1017/S1446181116000018 Landrini, M. and Tyvand, P. A. ''Generation of water waves and bores by impulsive bottom flux'', J. Eng. Math. 39(1–4):131-170, 2001. doi:10.1023/A:1004857624937 Lustri, C. J., McCue, S. W. and Chapman, S. J. ''Exponential asymptotics of free surface flow due to a line source''. IMA J. Appl. Math., 78(4):697–713, 2013. doi:10.1093/imamat/hxt016 Stokes, T. E., Hocking, G. C. and Forbes, L.K. ''Unsteady free surface flow induced by a line sink in a fluid of finite depth'', Comp. Fluids, 37(3):236–249, 2008. doi:10.1016/j.compfluid.2007.06.002 Tuck, E. O. and Vanden-Broeck, J.-M. ''A cusp-like free-surface flow due to a submerged source or sink''. ANZIAM J. 25:443–450, 1984. doi:10.1017/s0334270000004197 Vanden-Broeck, J.-M., Schwartz, L. W. and Tuck, E. O. ''Divergent low-Froude-number series expansion of nonlinear free-surface flow problems". Proc. Roy. Soc. A., 361(1705):207–224, 1978. doi:10.1098/rspa.1978.0099 Vanden-Broeck, J.-M. and Keller, J. B. ''Free surface flow due to a sink'', J. Fluid Mech, 175:109–117, 1987. doi:10.1017/s0022112087000314 Yih, C.-S. Stratified flows. Academic Press, New York, 1980. doi:10.1016/B978-0-12-771050-1.X5001-3


2017 ◽  
Vol 156 ◽  
pp. 526-533
Author(s):  
G.C. Hocking ◽  
H.H.N. Nguyen ◽  
T.E. Stokes ◽  
L.K. Forbes

Author(s):  
L. H. Wiryanto ◽  
E. O. Tuck

AbstractA steady two-dimensional free-surface flow in a channel of finite depth is considered. The channel ends abruptly with a barrier in the form of a vertical wall of finite height. Hence the stream, which is uniform far upstream, is forced to go upward and then falls under the effect of gravity. A configuration is examined where the rising stream splits into two jets, one falling backward and the other forward over the wall, in a fountain-like manner. The backward-going jet is assumed to be removed without disturbing the incident stream. This problem is solved numerically by an integral-equation method. Solutions are obtained for various values of a parameter measuring the fraction of the total incoming flux that goes into the forward jet. The limit where this fraction is one is also examined, the water then all passing over the wall, with a 120° corner stagnation point on the upper free surface.


1995 ◽  
Vol 297 ◽  
pp. 37-47 ◽  
Author(s):  
G. C. Hocking

Accurate numerical solutions to the problem of finding the location of the interface between two unconfined regions of fluid of different density during the withdrawal process are presented. Supercritical flows are considered, in which the interface is drawn directly into the sink. As the flow rate is reduced, the interface enters the sink more steeply, until the solution method breaks down just before the interface enters the sink vertically from above, and becomes flow from the lower layer only. This lower bound on supercritical flow is compared with the upper bound on single-layer (free surface) flow with good agreement.


1975 ◽  
Vol 3 (1) ◽  
pp. 51-68 ◽  
Author(s):  
Thomas G. Smith ◽  
J.O. Wilkes

Author(s):  
Arthur E. P. Veldman ◽  
Henk Seubers ◽  
Peter van der Plas ◽  
Joop Helder

The simulation of free-surface flow around moored or floating objects faces a series of challenges, concerning the flow modelling and the numerical solution method. One of the challenges is the simulation of objects whose dynamics is determined by a two-way interaction with the incoming waves. The ‘traditional’ way of numerically coupling the flow dynamics with the dynamics of a floating object becomes unstable (or requires severe underrelaxation) when the added mass is larger than the mass of the object. To deal with this two-way interaction, a more simultaneous type of numerical coupling is being developed. The paper will focus on this issue. To demonstrate the quasi-simultaneous method, a number of simulation results for engineering applications from the offshore industry will be presented, such as the motion of a moored TLP platform in extreme waves, and a free-fall life boat dropping into wavy water.


Sign in / Sign up

Export Citation Format

Share Document