Shock capturing schemes with local mesh adaptation for high speed compressible flows on three dimensional unstructured grids

2012 ◽  
Vol 70 ◽  
pp. 126-135 ◽  
Author(s):  
Vinh-Tan Nguyen ◽  
Hoang Huy Nguyen ◽  
Matthew Antony Price ◽  
Jaik Kwang Tan
2016 ◽  
Vol 40 (3) ◽  
pp. 1728-1740
Author(s):  
Hoang-Huy Nguyen ◽  
Vinh-Tan Nguyen ◽  
Matthew A. Price ◽  
Oubay Hassan

Author(s):  
Y Wang ◽  
S Komori

A pressure-based finite volume procedure developed previously for incompressible flows is extended to predict the three-dimensional compressible flow within a centrifugal impeller. In this procedure, the general curvilinear coordinate system is used and the collocated grid arrangement is adopted. Mass-averaging is used to close the instantaneous Navier-Stokes equations. The covariant velocity components are used as the main variables for the momentum equations, making the pressure-velocity coupling easier. The procedure is successfully applied to predict various compressible flows from subsonic to supersonic. With the aid of the k-ɛ turbulence model, the flow details within a centrifugal impeller are obtained using the present procedure. Predicted distributions of the meridional velocity and the static pressure are reasonable. Calculated radial velocities and flow angles are favourably compared with the measurements at the exit of the impeller.


2009 ◽  
Vol 76 (2) ◽  
Author(s):  
Lucia Catabriga ◽  
Denis A. F. de Souza ◽  
Alvaro L. G. A. Coutinho ◽  
Tayfun E. Tezduyar

The streamline-upwind/Petrov–Galerkin (SUPG) formulation of compressible flows based on conservation variables, supplemented with shock-capturing, has been successfully used over a quarter of a century. In this paper, for inviscid compressible flows, the YZβ shock-capturing parameter, which was developed recently and is based on conservation variables only, is compared with an earlier parameter derived based on the entropy variables. Our studies include comparing, in the context of these two versions of the SUPG formulation, computational efficiency of the element- and edge-based data structures in iterative computation of compressible flows. Tests include 1D, 2D, and 3D examples.


2016 ◽  
Vol 846 ◽  
pp. 67-72
Author(s):  
Samuel Stennett ◽  
Wilson Chan ◽  
David E. Gildfind ◽  
Peter Jacobs

The computational fluid dynamics solver Eilmer has proven useful to The University of Queensland’s Centre for Hypersonics for its ability to simulate high-speed compressible flows. In Eilmer, turbulence is modelled using Wilcox’s 2006 k-ω model. While the turbulence model implementation has been validated for two-dimensional and axisymmetric flows, validation is required for three-dimensional flows. The present paper describes the progress of the validation of the k-ω turbulence model for two three-dimensional test cases. A case featuring Mach 4.5 air flow over a flat plate produced results that correlated with previous numerical results within 4%. A second case featuring the injection of Mach 1 air into a Mach 4 air cross-flow produced results indicating that the code successfully captured the main flow features.


2011 ◽  
Vol 243-249 ◽  
pp. 3670-3675
Author(s):  
Yun Dong Ma ◽  
Bo Li ◽  
Bin Fan

The aerodynamic numerical simulation model of high-speed railway tunnel was established based on the analyzing of the aerodynamic effect characteristics of high-speed railway tunnel. FLUENT three dimensional compressible flows SIMPLE algorithm was adopted, the three dimensional aerodynamic effect of high-speed railway tunnel was simulated on the condition that the high-speed train was in motion. The pressure changes law in the tunnel was obtained during the whole process when high-speed train traveling, and the pressure-time curve in the tunnel middle cross-section was plotted. It laid a foundation for the further development of tunnel lining dynamics analysis.


Author(s):  
Arun Govind Neelan ◽  
Manoj T. Nair

Non-linear schemes are widely used in high-speed flows to capture the discontinuities present in the solution. Limiters and weighted essentially non-oscillatory schemes (WENO) are the most common non-linear numerical schemes. Most of the high-resolution schemes use the piecewise parabolic reconstruction (PPR) technique for their robustness. However, it may be impossible to achieve non-oscillatory and dissipation-free solutions with the PPR technique without non-linear switches. Most of the shock-capturing schemes use excessive dissipation to suppress the oscillations present in the discontinuities. To eliminate these issues, an algorithm is proposed that uses the shock-capturing scheme (SCS) in the first step, and then the result is refined using a novel scheme called the Discontinuity Preserving Scheme (DPS). The present scheme is a hybrid shock capture-fitting scheme. The present scheme has outperformed other schemes considered in this work, in terms of shock resolution in linear and non-linear test cases. The most significant advantage of the present scheme is that it can resolve shocks with three grid points.


Sign in / Sign up

Export Citation Format

Share Document