iterative computation
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 13)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Thierno M. M. Sow

In this paper, a new iterative method  for solving  convex minimization  problems over the set of common fixed points of quasi-nonexpansive and demicontractive mappings is constructed. Convergence theorems are also proved in Hilbert spaces without any compactness assumption. As an application, we shall utilize our results to solve quadratic optimization  problems involving bounded linear operator. Our theorems are significant improvements on several important recent results.


2021 ◽  
Vol 11 (19) ◽  
pp. 9107
Author(s):  
Jiao Wang ◽  
Xinying Ye ◽  
Weiji Zheng ◽  
Peng Liu

Load and resistance factor design (LRFD) is widely used in building codes for reliability design. In the calculation of load and resistance factors, the third-moment method (3M) has been proposed to overcome the shortcomings (e.g., inevitable iterative computation, requirement of probability density functions (PDFs) of random variables) of other methods. With the existing 3M method, the iterative is simplified to one computation, and the PDFs of random variables are not required. In this paper, the computation of load and resistance factors is further simplified to no iterations. Furthermore, the accuracy of the proposed method is proved to be higher than the existing 3M methods. Additionally, with the proposed method, the limitations regarding applicable range in the existing 3M methods are avoided. With several examples, the comparison of the existing 3M method, the ASCE method, the Mori method, and the proposed method is given. The results show that the proposed method is accurate, simple, safe, and saves material.


Author(s):  
Liping Pang ◽  
Qiyuan Liang ◽  
Liqiang Duan

Abstract The ammonium bisulfate (ABS) widely exists at air preheater. The ABS may deposit and foul at the heating elements of air preheater because of the chemical reaction between SO3 at flue gas side and ammonia slip from SCR excess injection. The heat transfer equation between flue gas side and air side is constructed and simplified using physical and mathematical models accordingly. The finite difference method is applied to solve numerically by means of iterative computation. Based on the NH3 and SO3 concentration data from the real time data in the actual operation and the discrete calculation of the temperature field, the Radian number (Ra) is used to evaluate the possibility of ABS fouling and the developing trend of heating elements at the air preheater. A 1000MW ultra supercritical boiler is selected as example. The ABS deposit area is simulated under different working conditions 100%BMCR, 75% BMCR and 50% BMCR. The possible ABS deposition and fouling is analyzed for operators to evaluate the risk of cold-end and hot-end heating elements plate at air preheater. As the working load decreases lower than 50%BMCR, the deposition and fouling position could extend to the hot-end area of heating elements at air preheater.


2020 ◽  
Vol 6 (2) ◽  
pp. 0189-0192
Author(s):  
Chinnaraji Annamalai ◽  
Junzo Watada ◽  
Said Broumi ◽  
Vishnu Narayan Mishra

This paper presents an innovative computing method and models for optimizing the combination defined in combinatorics. The optimized combination has been derived from the iterative computation of multiple geometric series and summability by specialized approach. The optimized combinatorial technique has applications in science, engineering and management. In this paper, several properties and consequences on the innovative optimized combination has been introduced that are useful for scientific researchers who are solving scientific problems and meeting today’s challenges.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1237
Author(s):  
Chinenye Ezeh ◽  
Ren Tao ◽  
Li Zhe ◽  
Wang Yiqun ◽  
Qu Ying

Patterns of connectivity among nodes on networks can be revealed by community detection algorithms. The great significance of communities in the study of clustering patterns of nodes in different systems has led to the development of various methods for identifying different node types on diverse complex systems. However, most of the existing methods identify only either disjoint nodes or overlapping nodes. Many of these methods rarely identify disjunct nodes, even though they could play significant roles on networks. In this paper, a new method, which distinctly identifies disjoint nodes (node clusters), disjunct nodes (single node partitions) and overlapping nodes (nodes binding overlapping communities), is proposed. The approach, which differs from existing methods, involves iterative computation of bridging centrality to determine nodes with the highest bridging centrality value. Additionally, node similarity is computed between the bridge-node and its neighbours, and the neighbours with the least node similarity values are disconnected. This process is sustained until a stoppage criterion condition is met. Bridging centrality metric and Jaccard similarity coefficient are employed to identify bridge-nodes (nodes at cut points) and the level of similarity between the bridge-nodes and their direct neighbours respectively. Properties that characterise disjunct nodes are equally highlighted. Extensive experiments are conducted with artificial networks and real-world datasets and the results obtained demonstrate efficiency of the proposed method in distinctly detecting and classifying multi-type nodes in network communities. This method can be applied to vast areas such as examination of cell interactions and drug designs, disease control in epidemics, dislodging organised crime gangs and drug courier networks, etc.


Sign in / Sign up

Export Citation Format

Share Document