Numerical simulation of the flow stability in a high aspect ratio Taylor–Couette system submitted to a radial temperature gradient

2014 ◽  
Vol 101 ◽  
pp. 15-26 ◽  
Author(s):  
Stéphane Viazzo ◽  
Sébastien Poncet
Author(s):  
Dong Liu ◽  
Seok-Hwan Choi ◽  
Sang-Hyuk Lee ◽  
Jung-Ho Lee ◽  
Hyoung-Bum Kim

The flow between two concentric cylinders with the inner one rotating and with an imposed radial temperature gradient is studied using digital particle image velocimetry (DPIV) method. Four models of the outer cylinder without and with different numbers of slits (6, 9 and 18) are considered, and the radius ratio and aspect ratio of each models were 0.825 and 48, respectively. The flow regime in the Taylor-Couette flow was studied by increasing the Reynolds number. The results showed that smaller number of slits has no obvious effect on the transition process, which only change the shape of the vortex, and the transition to turbulent Taylor vortex is accelerated as the number of slit increases in both isothermal and non-isothermal conditions. It is also shown that the presence of temperature gradient increased the flow instability obviously as the Froude number larger than 0.0045.


Sign in / Sign up

Export Citation Format

Share Document