Development of discontinuous deformation analysis with displacement-dependent interface shear strength

2013 ◽  
Vol 47 ◽  
pp. 91-101 ◽  
Author(s):  
Li-zhong Wang ◽  
Hong-yi Jiang ◽  
Zhong-xuan Yang ◽  
You-cheng Xu ◽  
Xi-bing Zhu
2020 ◽  
Vol 57 (8) ◽  
pp. 1183-1196 ◽  
Author(s):  
Ting-kai Nian ◽  
Yan-jun Zhang ◽  
Hao Wu ◽  
Guang-qi Chen ◽  
Lu Zheng

The reliable numerical simulation of the landslide process contributes to the establishment of evidence-based disaster mitigation measures in seismically active zones. To achieve this goal, a simple and unified state-dependent shear strength model of discontinuities is presented to describe the shear strength degradation in a seismic landslide process. The proposed model establishes a relationship between the shear strength parameters and the global safety factor of the slope by assuming that the slope instability (or landslide initiation) is accompanied by an instantaneous shear strength degradation of discontinuities. To realize the model numerically, the algorithms for the computation of global safety factor and the modification of shear strength parameters were incorporated into the discontinuous deformation analysis (DDA). Subsequently, the kinematic accuracy of the improved DDA method was validated by comparisons with theoretical solutions for the dynamic sliding of a block on an inclined plane. Numerical simulations of the Daguangbao landslide triggered by the Wenchuan earthquake were performed using the improved DDA method. The results illustrate that the shear strength degradation of discontinuities affect the evolution process, travel distance, and post-failure shape of the seismic landslide significantly.


1987 ◽  
Vol 20 (8) ◽  
pp. 824
Author(s):  
J.E. Bechtold ◽  
Y. Dohmae ◽  
R.E. Sherman ◽  
R.B. Gustilo

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Karl Niklas Hansson ◽  
Stig Hansson

The surface roughness affects the bone response to dental implants. A primary aim of the roughness is to increase the bone-implant interface shear strength. Surface roughness is generally characterized by means of surface roughness parameters. It was demonstrated that the normally used parameters cannot discriminate between surfaces expected to give a high interface shear strength from surfaces expected to give a low interface shear strength. It was further demonstrated that the skewness parameter can do this discrimination. A problem with this parameter is that it is sensitive to isolated peaks and valleys. Another roughness parameter which on theoretical grounds can be supposed to give valuable information on the quality of a rough surface is kurtosis. This parameter is also sensitive to isolated peaks and valleys. An implant surface was assumed to have a fairly well-defined and homogenous “semiperiodic” surface roughness upon which isolated peaks were superimposed. In a computerized simulation, it was demonstrated that by using small sampling lengths during measurement, it should be possible to get accurate values of the skewness and kurtosis parameters.


2021 ◽  
pp. 014459872098153
Author(s):  
Yanzhi Hu ◽  
Xiao Li ◽  
Zhaobin Zhang ◽  
Jianming He ◽  
Guanfang Li

Hydraulic fracturing is one of the most important technologies for shale gas production. Complex hydraulic fracture networks can be stimulated in shale reservoirs due to the existence of numerous natural fractures. The prediction of the complex fracture network remains a difficult and challenging problem. This paper presents a fully coupled hydromechanical model for complex hydraulic fracture network propagation based on the discontinuous deformation analysis (DDA) method. In the proposed model, the fracture propagation and rock mass deformation are simulated under the framework of DDA, and the fluid flow within fractures is simulated using lubrication theory. In particular, the natural fracture network is considered by using the discrete fracture network (DFN) model. The proposed model is widely verified against several analytical and experimental results. All the numerical results show good agreement. Then, this model is applied to field-scale modeling of hydraulic fracturing in naturally fractured shale reservoirs. The simulation results show that the proposed model can capture the evolution process of complex hydraulic fracture networks. This work offers a feasible numerical tool for investigating hydraulic fracturing processes, which may be useful for optimizing the fracturing design of shale gas reservoirs.


Sign in / Sign up

Export Citation Format

Share Document