roughness parameter
Recently Published Documents


TOTAL DOCUMENTS

343
(FIVE YEARS 126)

H-INDEX

26
(FIVE YEARS 4)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 288
Author(s):  
Karol Bula ◽  
Bartosz Korzeniewski

The presented work’s aim is the application of low-power laser treatment for the enhancement of interfacial micromechanical adhesion between polyamide 6 (filled with glass fiber) and aluminum. A fiber laser beam was used to prepare micro-patterns on aluminum sheets. The micro-structuring was conducted in the regime of 50, 100, 200 and 300 mm/s laser beam speeds, for both sides. The joining process was realized in an injection molding process. Metallic inserts were surface engraved and overmolded in one-side and two-side configurations. A lap shear test was used to examine the strength of the joints. Engraved metallic surfaces and adequate imprints on polyamide side were checked by optical microscope with motorized stages, and roughness parameters were also determined. Microscopic observations made it possible to describe the grooves’ shape and to conclude that a huge recast melt was formed when the lowest laser beam speed was applied; thus, the roughness parameter Ra reached the highest value of 16.8 μm (compared to 3.5 μm obtained for the fastest laser speed). The maximum shear force was detected for a sample prepared with the lowest scanning speed (one-sides joints), and it was 883 N, while for two-sided joints, the ultimate force was 1410 N (for a scanning speed of 200 mm/s).


Lubricants ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 124
Author(s):  
Anastasios Zavos

This paper presents the impact of coating topography in piston ring-liner conjunction under mixed regime of lubrication using low viscosity oils. The study provides a time efficient analytical model including mixed-hydrodynamics regime of lubrication under different contact conditions. The method modified the expressions of the contact load and area of Greenwood-Tripp model in order to capture the real asperities interaction into contact. The model represents the tribological behavior of a thin top ring at Top Dead Centre, where boundary and mixed conditions are predominant. Electroplated CrN and PVD TiN coated rings were studied to predict the ring friction. The results are compared with an uncoated steel ring. The CrN coating shows slighter coefficient of friction, due to the coating morphology and roughness parameters. The TiN coating presents thicker lubricant films and higher coefficient of friction because the surface topography is quite rough with high peaks. This can be explained because of the major contribution of the roughness parameter and asperity slope in the boundary friction prediction.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 366
Author(s):  
Volodymyr Dzyura ◽  
Pavlo Maruschak ◽  
Stoyan Slavov ◽  
Volodymyr Gurey ◽  
Olegas Prentkovskis

The correlation between the service characteristics of the working surfaces of car parts belonging to the rotary body class, and quality parameters—in particular, the height-related roughness parameter Ra—was estimated. Low values of Ra were found to be unable to guarantee an optimal microrelief geometry and, accordingly, high-performance characteristics of the working surface. The oil-accumulation power of the parts was investigated as a primary characteristic of sliding friction using the group of Rk parameters in the Abbott–Firestone diagram, based on the profilogram of the test specimen’s surfaces. The oil-absorption power of the surfaces formed by different technological operations was compared with different microgeometric quality parameter values.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7631
Author(s):  
Huizhen Zhang ◽  
Changsuo Zhang ◽  
Zejin Yang ◽  
Zhiqiang Li ◽  
Chenlong Wang

Joint roughness determination is a fundamental issue in many areas of rock engineering, because joint roughness has significant influences on mechanical properties and deformation behavior of rock masses. Available models suggested in the literature neglected combined effects of shear direction, scale of rock discontinuities, inclination angle, and amplitude of asperities during the roughness calculations. The main goals of this paper are to establish a comprehensive parameter that considers the characteristics of the size effect, anisotropy, and point spacing effect of the discontinuity roughness, and to investigate the correlation between the proposed comprehensive parameter and joint roughness coefficients. In this work, the Barton ten standard profiles are digitally represented, then the morphological characteristics of the discontinuity profiles are extracted. A comprehensive parameter that considers the characteristics of the size effect, anisotropy, and point spacing effect of the discontinuity roughness is established, and its correlation with joint roughness coefficients (JRC) is investigated. The correlation between the proposed discontinuity roughness parameter and the joint roughness coefficients can predict the JRC value of the natural discontinuities with high accuracy, which provides tools for comprehensively characterizing the roughness characteristics of rock discontinuities. The roughness index Rvh[−30°,0] reflects the gentle slope characteristics of the rock discontinuity profiles in the shear direction, which ignores the segments with steep slopes greater than 30° on the discontinuity profiles. The influence of steep slope segments greater than 30° should be considered for the roughness anisotropy parameter in the future.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3202
Author(s):  
Sebastián Cedillo ◽  
Esteban Sánchez-Cordero ◽  
Luis Timbe ◽  
Esteban Samaniego ◽  
Andrés Alvarado

Due to the presence of boulders and different morphologies, mountain rivers contain various resistance sources. To correctly simulate river flow using 1-D hydrodynamic models, an accurate estimation of the flow resistance is required. In this article, a comparison between the physical roughness parameter (PRP) and effective roughness coefficient (ERC) is presented for three of the most typical morphological configurations in mountain rivers: cascade, step-pool, and plane-bed. The PRP and its variation were obtained through multiple measurements of field variables and an uncertainty analysis, while the ERC range was derived with a GLUE procedure implemented in HEC-RAS, a 1-D hydrodynamic model. In the GLUE experiments, two modes of the Representative Friction Slope Method (RFSM) between two cross-sections were tested, including the variation in the roughness parameter. The results revealed that the RFSM effect was limited to low flows in cascade and step-pool. Moreover, when HEC-RAS selected the RSFM, only acceptable results were presented for plane-bed. The difference between ERC and PRP depended on the flow magnitude and the morphology, and as shown in this study, when the flow increased, the ERC and PRP ranges approached each other and even overlapped in cascade and step-pool. This research aimed to improve the roughness value selection process in a 1-D model given the importance of this parameter in the predictability of the results. In addition, a comparison was presented between the results obtained with the numerical model and the values calculated with the field measurements


2021 ◽  
Vol 1208 (1) ◽  
pp. 012005
Author(s):  
Atif Hodžić ◽  
Elmasa Aldžić ◽  
Damir Hodžić

Abstract Paper presents the design of experiment and determining mathematical model to calculate roughness parameter of wood planned surface. For design of experiment three different types of solid wood were taken and processed on the planner with three different displacements and three different cutting speeds. After measuring the roughness parameter Rz, experimental results were obtained on the basis of which the central composite plan of the experiment was made. Based on that, a model of roughness parameter Rz was made, which is adequate and with high accuracy. The significance of the model coefficients was determined using the R software and the results were presented using the Design Expert software.


Author(s):  
Priya M. Gouder ◽  
Praveen I. Chandaragi ◽  
Krishna B. Chavaraddi ◽  
G. B. Marali

The Kelvin-Helmholtz instability (KHI) occurs at the interface amongst two fluids, which are in relative motion with a common boundary. The growth rate of waves occurs whenever the relative velocity is greater as compared with the critical relative velocity. In the present paper, the influence of boundary roughness on KHI under the impact magnetic field in a couple-stress fluid layer bounded by a rigid surface at the lower side and upper side by a fluid saturated porous layer. Using suitable surface and boundary conditions, we have derived the dispersion relation and results are depicted graphically. As observed in presence of sharp interface, magnetic field exhibits stabilizing effect however, destabilizing effect is shown by the buoyancy force on KHI. Also, noted that the growth rate of interface reduces, as there is a rise in roughness parameter value.


Author(s):  
Abhimanyu Chaudhari ◽  
Mohd Zaheer Khan Yusufzai ◽  
Meghanshu Vashista

Ultrasonic vibration-assisted dry grinding is a sustainable hybrid manufacturing technology that decreases the negative environmental impact of coolant, reduces manufacturing costs, and improves surface integrity. The present investigation analyses the mechanisms associated with ultrasonic vibration-assisted dry grinding of AISI D2 tool steel with an alumina grinding wheel. It also compares the influence of traditional dry grinding and traditional wet grinding modes with the ultrasonic vibration-assisted dry grinding mode at different ultrasonic vibration amplitudes. Ultrasonic vibration was applied to the sample in the longitudinal feed direction. Further, kinematics of the abrasive grit path during the traditional grinding and ultrasonic vibration-assisted dry grinding is presented schematically. In this research, the impacts of ultrasonic vibration amplitude as well as the depth of cut on the process yields such as ground surface topography, grinding force, specific grinding energy, force ratio, surface finish, microstructure, and hardness were investigated experimentally. Experimental results revealed that the highest decline in tangential and normal grinding forces in ultrasonic vibration-assisted dry grinding at ultrasonic vibration amplitude 10 µm and the reduction in surface roughness parameter ( Ra, Rq, and Rz) in ultrasonic vibration-assisted dry grinding was 43.23%, 42.59%, and 33.69%, respectively, in comparison to those in traditional dry grinding and 26.35%, 26.94%, and 27.48%, respectively, in comparison to those in traditional wet grinding. It was observed that ultrasonic vibration-assisted dry grinding is beneficial as the profile produced by ultrasonic vibration-assisted dry grinding has a comparatively flat tip, and profile points are shifted to the bottom of the mean line. This study is expected to assist ultrasonic vibration-assisted dry grinding of hard materials.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6105
Author(s):  
Timur Rizovich Ablyaz ◽  
Evgeny Sergeevich Shlykov ◽  
Karim Ravilevich Muratov

The article is devoted to increasing the efficiency of electrical discharge machining of special-purpose items with composite electrode tools. The subject of research is the parameter of the roughness of the processed surface and the work of the electro-discharge machining (EDM) of 40Crsteel in various modes of electrical discharge machining. The aim of the work is to increase the efficiency of the process of copy-piercing electrical discharge machining of parts introduced into the composition of a special-purpose product and the use of electrode tools with the introduction of 20% graphite. Experimental studies were carried out using the method of a full factorial experiment with a subsequent regression analysis. The experiments were carried out using a copy-piercing Smart CNC EDM machine, a tool electrode, and a profile composite electrode. Empirical dependencies were established, reflecting the relationship between the processing modes, productivity, and surface roughness parameter after processing. A theoretical model for calculating the roughness parameter was developed, which makes it possible to predict the quality of the processed surface with a reliability of 10%–15%. To ensure the required ratios of the quality of the processed surface at the maximum performance indicators, technological recommendations were obtained, as a result of which a 35% reduction in machine time was achieved when processing the “screw” part with the required indicators of surface quality.


2021 ◽  
Author(s):  
Sebastian Cedillo ◽  
Luis Timbe ◽  
Esteban Sanchez-Cordero ◽  
Esteban Samaniego ◽  
Katherine Narea ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document