An elastoplastic damage constitutive model for frozen soil based on the super/subloading yield surfaces

2020 ◽  
Vol 128 ◽  
pp. 103842
Author(s):  
Kai Sun ◽  
Liang Tang ◽  
Annan Zhou ◽  
Xianzhang Ling
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Shilong Ma ◽  
Zhaoming Yao ◽  
Shuang Liu ◽  
Xuan Pan

To study the mechanical properties of frozen soil, it is necessary to understand the damage characteristics of frozen soil. Four types of three-dimensional indoor tests of frozen sand were carried out at −5°C, −10°C, and −15°C to study the mechanical damage properties. These include different stress path tests with the principal stress coefficients of 0, 0.25, 0.5, and 0.75 while analyzing the entire failure process. First, the three-dimensional compression test of frozen sand was studied to analyze the influence of temperature and intermediate principal stress coefficient on the large principal stress of frozen soil. The damage cost of frozen sand under the influence of different temperatures and intermediate principal stress coefficients was also established. Second, using the characteristics of discreteness and randomness of the distribution of the microelements inside the frozen soil and assuming that the failure of the microelement of the frozen soil obeys the Weibull distribution, the Drucker–Prager strength criterion was used as the statistical distribution variable of the microelement of the frozen soil based on the strain equivalence hypothesis, statistical theory, and continuous damage mechanics. This allows for a constitutive model of frozen sand damage under the three-dimensional stress state to be established. Finally, the model parameter values through low-temperature three-dimensional test data were able to be determined. This model allows for the physical meaning of Weibull distribution parameters F0 and m to be analyzed, and the distribution parameters with temperature and intermediate principal stress coefficient can be modified to obtain a modified frozen sand damage constitutive model. The results show that the modified damage constitutive model can simulate the entire process curve of the large principal stress-strain of frozen sand. It shows that the large principal stress of frozen sand increases with the increase of temperature and intermediate principal stress coefficient. Concurrently, the frozen sand damage constitutive model proposed in this paper can describe the deformation behavior of frozen soil under different temperature and stress paths and can be adapted to various other sediment types.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
YanHui Yuan ◽  
Ming Xiao

By analysis of the microscopic damage mechanism of rock, a multiparameter elastoplastic damage constitutive model which considers damage mechanism of tension and shear is established. A revised general form of elastoplastic damage model containing damage internal variable of tensor form is derived by considering the hypothesis that damage strain is induced by the degeneration of elastic modulus. With decomposition of plastic strain introduced, the forms of tension damage variable and shear damage variable are derived, based on which effects of tension and shear damage on material’s stiffness and strength are considered simultaneously. Through the utilizing of Zienkiewicz-Pande criterion with tension limit, the specific form of the multiparameter damage model is derived. Numerical experiments show that the established model can simulate damage behavior of rock effectively.


2013 ◽  
Vol 423-426 ◽  
pp. 1187-1192 ◽  
Author(s):  
Zhi Min Li ◽  
Tao Liu ◽  
Zhi Li Cui

Starting from the thermodynamics, model of frozen soil is studied by energy dissipation theory and the inside and outside the state variables is given under isothermal conditions. Damage of frozen soil is re-flecked by effective stress and damage tensor in Damage Mechanics. Dissipation function is in form of plastic dissipation function (DP yield criterion) and the damage dissipation function. And plastic dissipation function is coupled of the damage variable. Through the elastic-plastic and damage evolution, frozen soil incremental elastic-plastic damage constitutive model is made. And finite element scheme is given.


2013 ◽  
Vol 27 (2) ◽  
pp. 169-182 ◽  
Author(s):  
Jun Liu ◽  
Gao Lin ◽  
Hong Zhong

Sign in / Sign up

Export Citation Format

Share Document