Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels

2018 ◽  
Vol 150 ◽  
pp. 165-183 ◽  
Author(s):  
S. Zghal ◽  
A. Frikha ◽  
F. Dammak
2019 ◽  
Vol 17 (03) ◽  
pp. 1850133 ◽  
Author(s):  
T. Truong-Thi ◽  
T. Vo-Duy ◽  
V. Ho-Huu ◽  
T. Nguyen-Thoi

This study presents an extension of the cell-based smoothed discrete shear gap method (CS-DSG3) using three-node triangular elements for the static and free vibration analyses of carbon nanotube reinforced composite (CNTRC) plates. The single-walled carbon nanotubes (SWCNTs) are assumed to be uniformly distributed (UD) and functionally graded (FG) distributed along the thickness direction. The material properties of carbon nanotube-reinforced composite plates are estimated according to the rule of mixture. The governing equations are developed based on the first-order shear deformation plate theory (FSDT). In the CS-DSG3, each triangular element will be divided into three sub-triangles, and in each sub-triangle, the stabilized discrete shear gap method is used to compute the strains and to avoid the transverse shear locking. Then the strain smoothing technique on the whole triangular element is used to smooth the strains on these three sub-triangles. Effects of several parameters, such as the different distribution of carbon nanotubes (CNTs), nanotube volume fraction, boundary condition and width-to-thickness ratio of plates are investigated. In addition, the effect of various orientation angles of CNTs is also examined in detail. The accuracy and reliability of the proposed method are verified by comparing its numerical solutions with those of other available results in the literature.


Author(s):  
Le Thi Nhu Trang ◽  
Hoang Van Tung

Geometrically nonlinear response of doubly curved panels reinforced by carbon nanotubes exposed to thermal environments and subjected to uniform external pressure are presented in this paper. Carbon nanotubes are reinforced into isotropic matrix through uniform and functionally graded distributions. Material properties of constituents are assumed to be temperature dependent, and effective elastic moduli of carbon nanotube-reinforced composite are determined according to an extended rule of mixture. Basic equations for carbon nanotube-reinforced composite doubly curved panels are established within the framework of first-order shear deformation theory. Analytical solutions are assumed, and Galerkin method is used to derive closed-form expressions of nonlinear load–deflection relation. Separate and combined effects of carbon nanotube distribution and volume fraction, elasticity of in-plane constraint, elevated temperature, initial imperfection, geometrical ratios and stiffness of elastic foundations on the nonlinear stability of nanocomposite doubly curved panels are analyzed through numerical examples.


2018 ◽  
Vol 53 (9) ◽  
pp. 1159-1179 ◽  
Author(s):  
Tao Fu ◽  
Zhaobo Chen ◽  
Hongying Yu ◽  
Zhonglong Wang ◽  
Xiaoxiang Liu

The present study is concerned with static and free vibration analyses of laminated functionally graded carbon nanotube reinforced composite rectangular plates on elastic foundation based on nth-order shear deformation theory. Four types of carbon nanotubes distributions along the plate thickness are considered, which include uniformly distributed and three other functionally graded distributions. Governing differential equations are derived by means of Hamilton’s principle. The differential quadrature method is developed to formulate the problem, and rapid convergence is observed in this study. A numerical comparison with available results in the literature is carried out to show the validity of the proposed theory. Furthermore, effects of the carbon nanotubes volume fraction, thickness side ratio, aspect ratio, foundation parameters, different thermal environments, the number of layers, lamination angle, boundary condition, and carbon nanotubes distribution types on the static response of laminated functionally graded carbon nanotube reinforced composite plates are also investigated.


2019 ◽  
Vol 22 (5) ◽  
pp. 1681-1706 ◽  
Author(s):  
Tao Fu ◽  
Zhaobo Chen ◽  
Hongying Yu ◽  
Qingjun Hao ◽  
Yanzheng Zhao

The present study is concerned with vibro-acoustic behavior analyses of laminated functionally graded carbon nanotube reinforced composite plates based on Reddy’s higher order shear deformation theory. Four types of carbon nanotubes distributions along the plate thickness are considered, which include uniformly distributed and three other functionally graded distributions. Governing differential equations are derived by means of Hamilton’s principle. The sound pressure and radiation efficiency are calculated with Rayleigh integral. A numerical comparison with available results in the literature is carried out to show the validity of the present model. Furthermore, effects of the carbon nanotubes volume fraction, different thermal environments, lamination angle and carbon nanotubes distribution types on the structural and acoustic response of laminated functionally graded carbon nanotube reinforced composite plates are also investigated.


Sign in / Sign up

Export Citation Format

Share Document