Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen

2004 ◽  
Vol 64 (6) ◽  
pp. 819-825 ◽  
Author(s):  
Masanori Kikuchi ◽  
Toshiyuki Ikoma ◽  
Soichiro Itoh ◽  
Hiroko N Matsumoto ◽  
Yoshihisa Koyama ◽  
...  
Soft Matter ◽  
2019 ◽  
Vol 15 (9) ◽  
pp. 2032-2042
Author(s):  
Daniel Svenšek ◽  
Harald Pleiner ◽  
Helmut R. Brand

We set up a continuum model capable of describing the pumping self-organization mechanism of the bacteria and quantifying it to the extent that an agreement with the experimentally observed channel width dependence of the pumping is reached.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hiromichi Tsukada ◽  
Minoru Tsukada

The spatiotemporal learning rule (STLR) proposed based on hippocampal neurophysiological experiments is essentially different from the Hebbian learning rule (HEBLR) in terms of the self-organization mechanism. The difference is the self-organization of information from the external world by firing (HEBLR) or not firing (STLR) output neurons. Here, we describe the differences of the self-organization mechanism between the two learning rules by simulating neural network models trained on relatively similar spatiotemporal context information. Comparing the weight distributions after training, the HEBLR shows a unimodal distribution near the training vector, whereas the STLR shows a multimodal distribution. We analyzed the shape of the weight distribution in response to temporal changes in contextual information and found that the HEBLR does not change the shape of the weight distribution for time-varying spatiotemporal contextual information, whereas the STLR is sensitive to slight differences in spatiotemporal contexts and produces a multimodal distribution. These results suggest a critical difference in the dynamic change of synaptic weight distributions between the HEBLR and STLR in contextual learning. They also capture the characteristics of the pattern completion in the HEBLR and the pattern discrimination in the STLR, which adequately explain the self-organization mechanism of contextual information learning.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1152
Author(s):  
Tatyana Kirila ◽  
Anna Smirnova ◽  
Alla Razina ◽  
Andrey Tenkovtsev ◽  
Alexander Filippov

The water–salt solutions of star-shaped six-arm poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines were studied by light scattering and turbidimetry. The core was hexaaza[26]orthoparacyclophane and the arms were poly-2-ethyl-2-oxazine, poly-2-isopropyl-2-oxazine, poly-2-ethyl-2-oxazoline, and poly-2-isopropyl-2-oxazoline. NaCl and N-methylpyridinium p-toluenesulfonate were used as salts. Their concentration varied from 0–0.154 M. On heating, a phase transition was observed in all studied solutions. It was found that the effect of salt on the thermosensitivity of the investigated stars depends on the structure of the salt and polymer and on the salt content in the solution. The phase separation temperature decreased with an increase in the hydrophobicity of the polymers, which is caused by both a growth of the side radical size and an elongation of the monomer unit. For NaCl solutions, the phase separation temperature monotonically decreased with growth of salt concentration. In solutions with methylpyridinium p-toluenesulfonate, the dependence of the phase separation temperature on the salt concentration was non-monotonic with minimum at salt concentration corresponding to one salt molecule per one arm of a polymer star. Poly-2-alkyl-2-oxazine and poly-2-alkyl-2-oxazoline stars with a hexaaza[26]orthoparacyclophane core are more sensitive to the presence of salt in solution than the similar stars with a calix[n]arene branching center.


Sign in / Sign up

Export Citation Format

Share Document