Three-dimensional thermoelastic analysis of cracked plain weave glass/epoxy composites at cryogenic temperatures

2004 ◽  
Vol 64 (15) ◽  
pp. 2353-2362 ◽  
Author(s):  
Tomo Takeda ◽  
Yasuhide Shindo ◽  
Fumio Narita
2006 ◽  
Vol 81 (20-22) ◽  
pp. 2479-2483 ◽  
Author(s):  
Y. Shindo ◽  
S. Takano ◽  
F. Narita ◽  
K. Horiguchi

2002 ◽  
Vol 2002.37 (0) ◽  
pp. 204-205
Author(s):  
Tomo TAKEDA ◽  
Yasuhide SHINDO ◽  
Fumio NARITA ◽  
Susumu KUMAGAI

2015 ◽  
Vol 16 (12) ◽  
pp. 2617-2626 ◽  
Author(s):  
Jian Gao ◽  
Jinhong Yu ◽  
Xinfeng Wu ◽  
Baolin Rao ◽  
Laifu Song ◽  
...  

2017 ◽  
Vol 88 (20) ◽  
pp. 2353-2361 ◽  
Author(s):  
Wei Fan ◽  
Dan-dan Li ◽  
Jia-lu Li ◽  
Juan-zi Li ◽  
Lin-jia Yuan ◽  
...  

To investigate the reinforcement architectures effect on the electromagnetic wave properties of carbon fiber reinforced polymer composites, three-dimensional (3D) interlock woven fabric/epoxy composites, 3D interlock woven fabric with stuffer warp/epoxy composites, and 3D orthogonal woven fabric/epoxy composites were studied by the free-space measurement system. The results showed that the three types of 3D woven carbon fiber fabric/epoxy composites had a slight difference in electromagnetic wave properties and the absorption was their dominant radar absorption mechanism. The electromagnetic wave absorption properties of the three types of composites were more than 90% (below −10 dB) over the 11.2–18 GHz bandwidth, and more than 60% (below −4 dB) over the 8–12 GHz bandwidth. Compared with unidirectional carbon fiber reinforced plastics, the three kinds of 3D woven carbon fiber fabric/epoxy composites exhibited better electromagnetic wave absorption properties over a broadband frequency range of 8–18 GHz. Therefore, the three kinds of 3D woven composite are expected to be used as radar absorption structures due to their excellent mechanical properties and outstanding absorption capacity. The total electromagnetic interference shielding effectiveness of the three types of 3D carbon fiber woven composites are all larger than 46 dB over the 8–12 GHz bandwidth, which is evidence that the three types of 3D carbon fiber woven composites can be used as excellent shielding materials for electromagnetic interference.


1998 ◽  
Vol 32 (1) ◽  
pp. 2-30 ◽  
Author(s):  
Makoto Ito ◽  
Tsu-Wei Chou

This paper analyzes the strengxth and failure behavior of plain weave composites. First, the geometrical characteristics of yarn shape, laminate stacking configuration, fiber volume fraction, and yarn packing fraction are investigated using three-dimensional geometrical models. Based on the geometrical characteristics, iso-strain approach is developed to predict elastic properties, stress distributions, and strengths under tensile loading. The laminate stacking configuration and fabric waviness ratio have significant influence on the composite failure behavior. Specimens of iso-phase, out-of-phase and random-phase laminate composites are prepared. The mathematical models developed are evaluated by microscopic observation and tensile tests.


Sign in / Sign up

Export Citation Format

Share Document