gas permeability
Recently Published Documents


TOTAL DOCUMENTS

1907
(FIVE YEARS 483)

H-INDEX

67
(FIVE YEARS 9)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 159
Author(s):  
Gongjin Cheng ◽  
Xuezhi Liu ◽  
He Yang ◽  
Xiangxin Xue ◽  
Lanjie Li

In this paper, orthogonal experiments are designed to study the sintering and smelting characteristics of the ludwigite ore. The predominant influencing factors of the optimal ratio, basicity and carbon content on different single sintering indexes, including the vertical sintering speed, yield rate, drum strength and low-temperature reduction pulverization index, are firstly explored by the range analysis method, and the main influencing factors on comprehensive indexes are obtained by a weighted scoring method based on different single index investigation. Considering the sintering characteristics, the primary and secondary influencing factors are: ordinary ore ratio, carbon content and basicity, and the optimal ore blending scheme is: basicity 1.7, ordinary ore blending ratio 60% and carbon content 5%. In terms of the smelting characteristics, the research obtains the order of the influencing factors on the softening start temperature, softening end temperature, softening zone, smelting start temperature, dripping temperature, smelting-dripping zone, maximum pressure difference and gas permeability index of the ludwigite sinters by simply considering various single smelting indexes. On this basis, considering the comprehensive softening-melting-dripping characteristics, the primary and secondary influencing factors are: carbon content, ordinary ore ratio and basicity, and the optimal ore blending scheme is: basicity 1.9, ordinary ore blending ratio 60% and a carbon content of 5.5%. Comprehensively, considering the sintering and smelting property of the ludwigite ore, the primary and secondary influencing factors are: carbon content, ordinary ore ratio and basicity, and the optimal ore blending scheme is: basicity 1.9, ordinary ore blending ratio 60% and a carbon content of 5.5%.


2022 ◽  
Author(s):  
Ruqia Al Shidhani ◽  
Ahmed Al Shueili ◽  
Hussain Al Salmi ◽  
Musallam Jaboob

Abstract Due to a resource optimization and efficiency improvements, wells that are hydraulically fractured in the tight gas Barik Formation of the Khazzan Field in the Sultanate of Oman are often temporarily left shut-in directly following a large scale massive hydraulic fracturing stimulation treatment. Extensive industry literature has often suggested (and reported), that this may result in a significant direct loss of productivity due to the delayed flowback and the resulting fracture conductivity and formation damage. This paper will review the available data from the Khazzan Field address these concerns; indicating where the concerns should and should not necessarily apply. The Barik Formation in the Khazzan Field is an over-pressured gas-condensate reservoir at 4,500 m with gas permeability ranging from 0.1 to 20 mD. The average well after hydraulic fracturing produces 25 MMscfd and 500 bcpd against a wellhead pressure of 4,000 psi. A typical hydraulic fracturing stimulation treatment consists of 14,000 bbl of a borate-crosslinked guar fluid, placing upwards of 1MM Lbs of high conductivity bauxite proppant within a single fracture. In order to assess the potential production loss due to delayed flowback operations, BP Oman performed a suite of formation damage tests including core samples from the Barik reservoir, fracture conductivity considerations and dynamic behaviors. Additionally, normalized production was compared between offset wells that were cleaned-up and put onto production at different times after the hydraulic fracturing operations. Core tests showed a range of fracture conductivities over time with delayed flowback after using the breaker concentrations from actual treatments. As expected, enhanced conductivity was achieved with additional breaker. The magnitude of the conductivity being created in these massive treatments was also demonstrated to be dominant with respect to damage effects. Finally, a normalized comparison of an extensive suite of wells clearly showed no discernible loss of production resulted from any delay in the flowback operations. This paper describes in details the workflow and resulting analysis of the impact of extensive shut-in versus immediate flowback post massive hydraulic fracturing. It indicates that the impact of such events will be limited if the appropriate steps have been taken to minimize the opportunity for damage to occur. Whereas the existing fracturing literature takes the safe stance of indicating that damage will always result from such shut-ins, this paper will demonstrate the limitations of such assumptions and the flexibility that can be demonstrated with real data.


2022 ◽  
Author(s):  
Yuan-Jian LIN ◽  
Jiang-Feng LIU ◽  
Tao CHEN ◽  
Bing-Xiang HUANG ◽  
Kundwa Marie Judith ◽  
...  

Abstract In this paper, a THMC (Thermal-Hydrological-Mechanical-Chemical) multi-field coupling triaxial cell was used to systematically study the evolution of gas permeability and the deformation characteristics of sandstone. The effects of confining pressure, axial pressure, and air pressure on gas permeability characteristics were fully considered in the test. The gas permeability of sandstone decreases with increasing confining pressure. When the confining pressure is low, the variation of gas permeability is greater than the variation of gas permeability at high confining pressure. The gas injection pressure has a significant effect on the gas permeability evolution of sandstone. As the gas injection pressure increases, the gas permeability of sandstone tends to decrease. At the same confining pressure, the gas permeability of the sample during the unloading path is less than the gas permeability of the sample in the loading path. When axial pressure is applied, it has a significant influence on the permeability evolution of sandstone. When the axial pressure is less than 30 MPa, the gas permeability of the sandstone increases as the axial pressure increases. At axial pressures greater than 30 MPa, the permeability decreases as the axial pressure increases. Finally, the micro-pore/fracture structure of the sample after the gas permeability test was observed using 3D X-ray CT imaging.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 70
Author(s):  
Zhaoying Chen ◽  
Guofu Li ◽  
Yi Wang ◽  
Zemin Li ◽  
Mingbo Chi ◽  
...  

Underground coal mining of CH4 gas-rich tectonic coal seams often induces methane outburst disasters. Investigating gas permeability evolution in pores of the tectonic coal is vital to understanding the mechanism of gas outburst disasters. In this study, the triaxial loading–unloading stresses induced gas permeability evolutions in the briquette tectonic coal samples, which were studied by employing the triaxial-loading–gas-seepage test system. Specifically, effects of loading paths and initial gas pressures on the gas permeability of coal samples were analyzed. The results showed the following: (1) The gas permeability evolution of coal samples was correlated with the volumetric strain change during triaxial compression scenarios. In the initial compaction and elastic deformation stages, pores and cracks in the coal were compacted, resulting in a reduction in gas permeability in the coal body. However, after the yield stage, the gas permeability could be enhanced due to sample failure. (2) The gas permeability of the tectonic coal decreased as a negative exponential function with the increase in initial gas pressure, in which the permeability was decreased by 67.32% as the initial gas pressure increased from 0.3 MPa to 1.5 MPa. (3) Coal samples underwent a period of strain development before they began to fail during confining pressure releasing. After the stress releasing-induced yield stage, the coal sample was deformed and cracked, resulting in a quickly increase in gas permeability. With a further releasing process, failure of the sample occurred, and thus induced rapidly increasing gas permeability. These obtained results could provide foundations for gas outburst prevention in mining gas-rich tectonic coal seams.


2022 ◽  
Vol 29 (1) ◽  
pp. 12
Author(s):  
Yin Zeng ◽  
Lu Wang ◽  
Chaofu Deng ◽  
Qiangxing Zhang ◽  
Zhide Wu ◽  
...  

2022 ◽  
Vol 334 ◽  
pp. 04010
Author(s):  
Luca Spinelli ◽  
Fabrizio Roncaglia ◽  
Roberto Biagi ◽  
Alessandro di Bona ◽  
Marcello Romagnoli ◽  
...  

Bipolar plates (BPs) are important components of Proton Exchange Membrane Fuel Cells (PEMFC). Graphite-epoxy composites, having a better corrosion resistance than metal-based BPs and better mechanical properties than graphite BPs, are a promising alternative. In this study, we tried to develop graphite-epoxy composites meeting the technical US DOE targets for 2020, with a proper choice of manufacturing conditions that ensure a good compromise between conductivity, flexural strength, and gas permeability. In particular, we studied the influence of the filler to binder ratio, changed the molding temperature and time, and investigated the effects of increasing pressure both on in-plane conductivity and on helium permeability. We found that both formulation and molding pressure are crucial in determining the permeability of the graphite-epoxy composites, whereas molding temperature and time seem to play a minor role.


2022 ◽  
Vol 29 (1) ◽  
pp. 12
Author(s):  
Qiangxing Zhang ◽  
Jianfeng Liu ◽  
Zhide Wu ◽  
Lu Wang ◽  
Chaofu Deng ◽  
...  

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 120
Author(s):  
Alexander Yu Alentiev ◽  
Ivan S. Levin ◽  
Nikolay A. Belov ◽  
Roman Yu Nikiforov ◽  
Sergey V. Chirkov ◽  
...  

Poly-2,6-dimethylphenylene oxide (PPO) film samples with varying degrees of crystallinity (from 0 to 69%) were obtained by means of different techniques. The films were studied by various physicochemical methods (Fourier-transform infrared spectroscopy, positron annihilation lifetime spectroscopy, X-ray diffraction, and 1H nuclear magnetic resonance relaxation). Solubility coefficients of gases in the PPO samples were measured via sorption isotherms of gases by volumetric technique with chromatographic detection. The apparent activation energy of permeation and the activation energy of diffusion of all gases were estimated based on temperature dependences of gas permeability and diffusivity for amorphous and semi-crystalline PPO in the range of 20–50 °C. The peculiarities of free volume, density, and thermal properties of gas transport confirm the nanoporosity of the gas-permeable crystalline phase of PPO. So, the PPO can be included in the group of organic molecular sieves.


Sign in / Sign up

Export Citation Format

Share Document