The role of reduced graphene oxide on chemical, mechanical and barrier properties of natural rubber composites

2014 ◽  
Vol 102 ◽  
pp. 74-81 ◽  
Author(s):  
Ning Yan ◽  
Giovanna Buonocore ◽  
Marino Lavorgna ◽  
Saulius Kaciulis ◽  
Santosh Kiran Balijepalli ◽  
...  
2013 ◽  
Vol 812 ◽  
pp. 263-266 ◽  
Author(s):  
Yaragalla Srinivasarao ◽  
Yahaya Subban Ri Hanum ◽  
Chin Han Chan ◽  
Kalarikkal Nandakumar ◽  
Thomas Sabu

Thermally reduced graphene oxide (graphene) filled natural rubber (NR) composites were fabricated by melt mixing method. Dielectric constant, dielectric loss and a.c conductivity data of the NR composites are reported. Highest conductivity of 3 x 10-4 S/m was obtained for the composite with 3 wt. % graphene with initial electrical percolation at a loading of 0.5 wt. %. High conductivity in the composite with 3 wt. % graphene is accounted by its homogeneity as observed in SEM micrographs.


2014 ◽  
Vol 6 (4) ◽  
pp. 2230-2234 ◽  
Author(s):  
Giuseppe Scherillo ◽  
Marino Lavorgna ◽  
Giovanna G. Buonocore ◽  
Yanhu H. Zhan ◽  
Hesheng S. Xia ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2938
Author(s):  
Giulia Fredi ◽  
Mahdi Karimi Jafari ◽  
Andrea Dorigato ◽  
Dimitrios N. Bikiaris ◽  
Riccardo Checchetto ◽  
...  

This work reports on the first attempt to prepare bioderived polymer films by blending polylactic acid (PLA) and poly(dodecylene furanoate) (PDoF). This blend, containing 10 wt% PDoF, was filled with reduced graphene oxide (rGO) in variable weight fractions (from 0.25 to 2 phr), and the resulting nanocomposites were characterized to assess their microstructural, thermal, mechanical, optical, electrical, and gas barrier properties. The PLA/PDoF blend resulted as immiscible, and the addition of rGO, which preferentially segregated in the PDoF phase, resulted in smaller (from 2.6 to 1.6 µm) and more irregularly shaped PDoF domains and in a higher PLA/PDoF interfacial interaction, which suggests the role of rGO as a blend compatibilizer. rGO also increased PLA crystallinity, and this phenomenon was more pronounced when PDoF was also present, thus evidencing a synergism between PDoF and rGO in accelerating the crystallization kinetics of PLA. Dynamic mechanical thermal analysis (DMTA) showed that the glass transition of PDoF, observed at approx. 5 °C, shifted to a higher temperature upon rGO addition. The addition of 10 wt% PDoF in PLA increased the strain at break from 5.3% to 13.0% (+145%), and the addition of 0.25 phr of rGO increased the tensile strength from 35.6 MPa to 40.2 MPa (+13%), without significantly modifying the strain at break. Moreover, rGO decreased the electrical resistivity of the films, and the relatively high percolation threshold (between 1 and 2 phr) was probably linked to the low aspect ratio of rGO nanosheets and their preferential distribution inside PDoF domains. PDoF and rGO also modified the optical transparency of PLA, resulting in a continuous decrease in transmittance in the visible/NIR range. Finally, rGO strongly modified the gas barrier properties, with a remarkable decrease in diffusivity and permeability to gases such as O2, N2, and CO2. Overall, the presented results highlighted the positive and sometimes synergistic role of PDoF and rGO in tuning the thermomechanical and functional properties of PLA, with simultaneous enhancement of ductility, crystallization kinetics, and gas barrier performance, and these novel polymer nanocomposites could thus be promising for packaging applications.


Author(s):  
Shuang Xia ◽  
Shi Feng ◽  
Zejiang Deng ◽  
Qiuyu Liang ◽  
Xu Xiang ◽  
...  

2018 ◽  
Vol 246 ◽  
pp. 236-245 ◽  
Author(s):  
Francis Chindeka ◽  
Philani Mashazi ◽  
Jonathan Britton ◽  
Gertrude Fomo ◽  
David O. Oluwole ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3277
Author(s):  
Jian Wang ◽  
Baohua Liu ◽  
Yu Cheng ◽  
Zhenwan Ma ◽  
Yanhu Zhan ◽  
...  

A flexible, wearable electronic device composed of magnetic iron oxide (Fe3O4)/reduced graphene oxide/natural rubber (MGNR) composites with a segregated network was prepared by electrostatic self-assembly, latex mixing, and in situ reduction. The segregated network offers the composites higher electrical conductivity and more reliable sensing properties. Moreover, the addi-tion of Fe3O4 provides the composites with better electromagnetic interference shielding effectiveness (EMI SE). The EMI shielding property of MGNR composites is more stable under tensile deformation and long-term cycling conditions and has a higher sensitivity to stretch strain compared with the same structure made from reduced graphene oxide/natural rubber (GNR) composites. The EMI SE value of MGNR composites reduces by no more than 2.9% under different tensile permanent deformation, cyclic stretching, and cyclic bending conditions, while that of GNR composites reduces by approximately 16% in the worst case. Additionally, the MGNR composites have a better sensing performance and can maintain stable signals, even in the case of cyclic stretching with a very small strain (0.05%). Furthermore, they can steadily monitor the changes in resistance signals in various human motions such as finger bending, wrist bending, speaking, smiling, and blinking, indicating that the MGNR composites can be used in future wearable electronic flexibility devices.


ChemSusChem ◽  
2016 ◽  
Vol 9 (21) ◽  
pp. 3040-3044 ◽  
Author(s):  
Kyung Taek Cho ◽  
Giulia Grancini ◽  
Yonghui Lee ◽  
Dimitrios Konios ◽  
Sanghyun Paek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document