Estimating model inadequacy in ordinary differential equations with physics-informed neural networks

2021 ◽  
Vol 245 ◽  
pp. 106458
Author(s):  
Felipe A.C. Viana ◽  
Renato G. Nascimento ◽  
Arinan Dourado ◽  
Yigit A. Yucesan
2006 ◽  
Vol 16 (09) ◽  
pp. 2729-2736 ◽  
Author(s):  
XIAO-SONG YANG ◽  
YAN HUANG

This paper presents a new class of chaotic and hyperchaotic low dimensional cellular neural networks modeled by ordinary differential equations with some simple connection matrices. The chaoticity of these neural networks is indicated by positive Lyapunov exponents calculated by a computer.


Author(s):  
Jean Chamberlain Chedjou ◽  
Kyandoghere Kyamakya

This paper develops and validates through a series of presentable examples, a comprehensive high-precision, and ultrafast computing concept for solving nonlinear ordinary differential equations (ODEs) and partial differential equations (PDEs) with cellular neural networks (CNN). The core of this concept is a straightforward scheme that we call "nonlinear adaptive optimization (NAOP),” which is used for a precise template calculation for solving nonlinear ODEs and PDEs through CNN processors. One of the key contributions of this work is to demonstrate the possibility of transforming different types of nonlinearities displayed by various classical and well-known nonlinear equations (e.g., van der Pol-, Rayleigh-, Duffing-, Rössler-, Lorenz-, and Jerk-equations, just to name a few) unto first-order CNN elementary cells, and thereby enabling the easy derivation of corresponding CNN templates. Furthermore, in the case of PDE solving, the same concept also allows a mapping unto first-order CNN cells while considering one or even more nonlinear terms of the Taylor's series expansion generally used in the transformation of a PDE in a set of coupled nonlinear ODEs. Therefore, the concept of this paper does significantly contribute to the consolidation of CNN as a universal and ultrafast solver of nonlinear ODEs and/or PDEs. This clearly enables a CNN-based, real-time, ultraprecise, and low-cost computational engineering. As proof of concept, two examples of well-known ODEs are considered namely a second-order linear ODE and a second order nonlinear ODE of the van der Pol type. For each of these ODEs, the corresponding precise CNN templates are derived and are used to deduce the expected solutions. An implementation of the concept developed is possible even on embedded digital platforms (e.g., field programmable gate array (FPGA), digital signal processor (DSP), graphics processing unit (GPU), etc.). This opens a broad range of applications. Ongoing works (as outlook) are using NAOP for deriving precise templates for a selected set of practically interesting ODEs and PDEs equation models such as Lorenz-, Rössler-, Navier Stokes-, Schrödinger-, Maxwell-, etc.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhenyu Yang ◽  
Mingge Zhang ◽  
Guojing Liu ◽  
Mingyu Li

The recommendation method based on user sessions is mainly to model sessions as sequences in the assumption that user behaviors are independent and identically distributed, and then to use deep semantic information mining through Deep Neural Networks. Nevertheless, user behaviors may be a nonindependent intention at irregular points in time. For example, users may buy painkillers, books, or clothes for different reasons at different times. However, this has not been taken seriously in previous studies. Therefore, we propose a session recommendation method based on Neural Differential Equations in an attempt to predict user behavior forward or backward from any point in time. We used Ordinary Differential Equations to train the Graph Neural Network and could predict forward or backward at any point in time to model the user's nonindependent sessions. We tested for four real datasets and found that our model achieved the expected results and was superior to the existing session-based recommendations.


2006 ◽  
Vol 16 (04) ◽  
pp. 1019-1021 ◽  
Author(s):  
XIAO-SONG YANG ◽  
YAN HUANG

In this letter we report a new class of chaotic three-neuron cellular neural networks that are described by special three-dimensional autonomous ordinary differential equations.


Sign in / Sign up

Export Citation Format

Share Document