Neural Networks to Approximate Solutions of Ordinary Differential Equations

Author(s):  
Georg Engel
2006 ◽  
Vol 16 (09) ◽  
pp. 2729-2736 ◽  
Author(s):  
XIAO-SONG YANG ◽  
YAN HUANG

This paper presents a new class of chaotic and hyperchaotic low dimensional cellular neural networks modeled by ordinary differential equations with some simple connection matrices. The chaoticity of these neural networks is indicated by positive Lyapunov exponents calculated by a computer.


Author(s):  
Jean Chamberlain Chedjou ◽  
Kyandoghere Kyamakya

This paper develops and validates through a series of presentable examples, a comprehensive high-precision, and ultrafast computing concept for solving nonlinear ordinary differential equations (ODEs) and partial differential equations (PDEs) with cellular neural networks (CNN). The core of this concept is a straightforward scheme that we call "nonlinear adaptive optimization (NAOP),” which is used for a precise template calculation for solving nonlinear ODEs and PDEs through CNN processors. One of the key contributions of this work is to demonstrate the possibility of transforming different types of nonlinearities displayed by various classical and well-known nonlinear equations (e.g., van der Pol-, Rayleigh-, Duffing-, Rössler-, Lorenz-, and Jerk-equations, just to name a few) unto first-order CNN elementary cells, and thereby enabling the easy derivation of corresponding CNN templates. Furthermore, in the case of PDE solving, the same concept also allows a mapping unto first-order CNN cells while considering one or even more nonlinear terms of the Taylor's series expansion generally used in the transformation of a PDE in a set of coupled nonlinear ODEs. Therefore, the concept of this paper does significantly contribute to the consolidation of CNN as a universal and ultrafast solver of nonlinear ODEs and/or PDEs. This clearly enables a CNN-based, real-time, ultraprecise, and low-cost computational engineering. As proof of concept, two examples of well-known ODEs are considered namely a second-order linear ODE and a second order nonlinear ODE of the van der Pol type. For each of these ODEs, the corresponding precise CNN templates are derived and are used to deduce the expected solutions. An implementation of the concept developed is possible even on embedded digital platforms (e.g., field programmable gate array (FPGA), digital signal processor (DSP), graphics processing unit (GPU), etc.). This opens a broad range of applications. Ongoing works (as outlook) are using NAOP for deriving precise templates for a selected set of practically interesting ODEs and PDEs equation models such as Lorenz-, Rössler-, Navier Stokes-, Schrödinger-, Maxwell-, etc.


Author(s):  
Yu Ying ◽  
Mikhail D. Malykh

The preservation of quadratic integrals on approximate solutions of autonomous systems of ordinary differential equations x=f(x), found by the trapezoidal scheme, is investigated. For this purpose, a relation has been established between the trapezoidal scheme and the midpoint scheme, which preserves all quadratic integrals of motion by virtue of Coopers theorem. This relation allows considering the trapezoidal scheme as dual to the midpoint scheme and to find a dual analogue for Coopers theorem by analogy with the duality principle in projective geometry. It is proved that on the approximate solution found by the trapezoidal scheme, not the quadratic integral itself is preserved, but a more complicated expression, which turns into an integral in the limit as t0.Thus the concept of conjugate difference schemes is investigated in pure algebraic way. The results are illustrated by examples of linear and elliptic oscillators. In both cases, expressions preserved by the trapezoidal scheme are presented explicitly.


Author(s):  
Ali Sadollah ◽  
Joong Hoon Kim

In this chapter, a general strategy is recommended to solve variety of linear and nonlinear ordinary differential equations (ODEs) with boundary value conditions. With the aid of certain fundamental concepts of mathematics, Fourier series expansion, and metaheuristic algorithms, ODEs can be represented as an optimization problem. The purpose is to reduce the weighted residual error (error function) of the ODEs. Boundary values of ODEs are considered as constraints for the optimization model. Inverted generational distance metric is utilized for evaluation and assessment of approximate solutions versus exact solutions. Four ODEs having different orders and features are approximately solved and compared with their exact solutions. The optimization task is carried out using different optimizers including the particle swarm optimization and the water cycle algorithm. The optimization results obtained show that the proposed method equipped with metaheuristic algorithms can be successfully applied for approximate solving of different types of ODEs.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhenyu Yang ◽  
Mingge Zhang ◽  
Guojing Liu ◽  
Mingyu Li

The recommendation method based on user sessions is mainly to model sessions as sequences in the assumption that user behaviors are independent and identically distributed, and then to use deep semantic information mining through Deep Neural Networks. Nevertheless, user behaviors may be a nonindependent intention at irregular points in time. For example, users may buy painkillers, books, or clothes for different reasons at different times. However, this has not been taken seriously in previous studies. Therefore, we propose a session recommendation method based on Neural Differential Equations in an attempt to predict user behavior forward or backward from any point in time. We used Ordinary Differential Equations to train the Graph Neural Network and could predict forward or backward at any point in time to model the user's nonindependent sessions. We tested for four real datasets and found that our model achieved the expected results and was superior to the existing session-based recommendations.


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Usama H. Hegazy

The dynamic behavior of a rectangular thin plate under parametric and external excitations is investigated. The motion of the thin plate is modeled by coupled second-order nonlinear ordinary differential equations. Their approximate solutions are sought by applying the method of multiple scales. A reduced system of four first-order ordinary differential equations is determined to describe the time variation of the amplitudes and phases of the vibration in the horizontal and vertical directions. The steady-state response and the stability of the solutions for various parameters are studied numerically, using the frequency-response function and the phase-plane methods. It is also shown that the system parameters have different effects on the nonlinear response of the thin plate. Moreover, the chaotic motion of the thin plate is found by numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document