The spectral finite element model for analysis of flexural–shear coupled wave propagation

2005 ◽  
Vol 68 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Magdalena Palacz ◽  
Marek Krawczuk ◽  
Wiesław Ostachowicz
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yiping Shen ◽  
Zhijun Zhu ◽  
Songlai Wang ◽  
Gang Wang

Tapered thin-walled structures have been widely used in wind turbine and rotor blade. In this paper, a spectral finite element model is developed to investigate tapered thin-walled beam structures, in which torsion related warping effect is included. First, a set of fully coupled governing equations are derived using Hamilton’s principle to account for axial, bending, and torsion motion. Then, the differential transform method (DTM) is applied to obtain the semianalytical solutions in order to formulate the spectral finite element. Finally, numerical simulations are conducted for tapered thin-walled wind turbine rotor blades and validated by the ANSYS. Modal frequency results agree well with the ANSYS predictions, in which approximate 30,000 shell elements were used. In the SFEM, one single spectral finite element is needed to perform such calculations because the interpolation functions are deduced from the exact semianalytical solutions. Coupled axial-bending-torsion mode shapes are obtained as well. In summary, the proposed spectral finite element model is able to accurately and efficiently to perform the modal analysis for tapered thin-walled rotor blades. These modal frequency and mode shape results are important to carry out design and performance evaluation of the tapered thin-walled structures.


1997 ◽  
Vol 05 (04) ◽  
pp. 383-402
Author(s):  
Tony W. H. Sheu ◽  
C. C. Fang

A hyperbolic equation is considered for the propagation of pressure disturbance waves in layered fluids having different fluid properties. For acoustic problems of this sort, the characteristic finite element model alone does not suffice to ensure prediction of the monotonic wave profile across fluids having different properties. A flux corrected transport solution algorithm is intended for incorporation into the underlying Taylor–Galerkin finite element framework. The advantage of this finite element approach, in addition to permitting oscillation-free solutions, is that it avoids the necessity of dealing with medium discontinuity. As an analysis tool, the proposed monotonic finite element model has been intensively verified through problems which are amenable to analytic solutions. In modeling wave propagation in layered fluids, we have investigated the influence of the degree of medium change on the finite element solutions. Also, different finite element solutions are considered to show the superiority of using the flux corrected transport Taylor–Galerkin finite element model.


Sign in / Sign up

Export Citation Format

Share Document