scholarly journals Dynamic Analysis of Tapered Thin-Walled Beams Using Spectral Finite Element Method

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yiping Shen ◽  
Zhijun Zhu ◽  
Songlai Wang ◽  
Gang Wang

Tapered thin-walled structures have been widely used in wind turbine and rotor blade. In this paper, a spectral finite element model is developed to investigate tapered thin-walled beam structures, in which torsion related warping effect is included. First, a set of fully coupled governing equations are derived using Hamilton’s principle to account for axial, bending, and torsion motion. Then, the differential transform method (DTM) is applied to obtain the semianalytical solutions in order to formulate the spectral finite element. Finally, numerical simulations are conducted for tapered thin-walled wind turbine rotor blades and validated by the ANSYS. Modal frequency results agree well with the ANSYS predictions, in which approximate 30,000 shell elements were used. In the SFEM, one single spectral finite element is needed to perform such calculations because the interpolation functions are deduced from the exact semianalytical solutions. Coupled axial-bending-torsion mode shapes are obtained as well. In summary, the proposed spectral finite element model is able to accurately and efficiently to perform the modal analysis for tapered thin-walled rotor blades. These modal frequency and mode shape results are important to carry out design and performance evaluation of the tapered thin-walled structures.

2020 ◽  
Vol 17 ◽  
pp. 00133
Author(s):  
Yuriy Klochkov ◽  
Tlek Ishchanov ◽  
Alexandr Andreev ◽  
Mikhail Klochkov

The article presents an algorithm for constructing a finite element model of deformation of thin-walled structures such as pipelines, tanks, bunkers included in the structure of the agro-industrial complex. The proposed model takes into account the deformation of the transverse shear. As a finite element, it is proposed to use a quadrangular fragment of the middle surface of a thin-walled structure of the agro-industrial complex with nodes located at its vertices. The components of the displacement vector and their partial derivatives of the first order with respect to curvilinear coordinates, as well as the components of the normal rotation angle vector, were chosen as the required unknowns. In the construction of the finite element model, the developed interpolation procedure was used for the components of the displacement vector and the component of the normal rotation angle vector as components of vector fields. The efficiency of the proposed finite element models in terms of a significant increase in the accuracy of calculations, the convergence of the computational process and the adequacy of the results to the physical meaning of the problem was proved on the numerical example of the calculation of the pipeline fragment.


Transport ◽  
2007 ◽  
Vol 22 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Andrejs Kovalovs ◽  
Evgeny Barkanov ◽  
Sergejs Gluhihs

The design methodology based on the planning of experiments and response surface technique has been developed for an optimum placement of Macro Fiber Composite (MFC) actuators in the helicopter rotor blades. The baseline helicopter rotor blade consists of D‐spar made of UD GFRP, skin made of +450/‐450 GFRP, foam core, MFC actuators placement on the skin and balance weight. 3D finite element model of the rotor blade has been built by ANSYS, where the rotor blade skin and spar “moustaches” are modeled by the linear layered structural shell elements SHELL99, and the spar and foam ‐ by 3D 20‐node structural solid elements SOLID 186. The thermal analyses of 3D finite element model have been developed to investigate an active twist of the helicopter rotor blade. Strain analogy between piezoelectric strains and thermally induced strains is used to model piezoelectric effects. The optimisation results have been obtained for design solutions, connected with the application of active materials, and checked by the finite element calculations.


2013 ◽  
Vol 284-287 ◽  
pp. 1831-1835
Author(s):  
Wei Hsin Gau ◽  
Kun Nan Chen ◽  
Yunn Lin Hwang

In this paper, two experimental techniques, Electronic Speckle Pattern Interferometry and Stroboscopic Interferometry, and two different finite element analysis packages are used to measure or to analyze the frequencies and mode shapes of a micromachined, cross-shaped torsion structure. Four sets of modal data are compared and shown having a significant discrepancy in their frequency values, although their mode shapes are quite consistent. Inconsistency in the frequency results due to erroneous inputs of geometrical and material parameters to the finite element analysis can be salvaged by applying the finite element model updating procedure. Two updating cases show that the optimization sequences converge quickly and significant improvements in frequency prediction are achieved. With the inclusion of the thickness parameter, the second case yields a maximum of under 0.4% in frequency difference, and all parameters attain more reliable updated values.


2018 ◽  
Vol 42 (5) ◽  
pp. 467-482 ◽  
Author(s):  
Damien Caous ◽  
Nicolas Lavauzelle ◽  
Julien Valette ◽  
Jean-Christophe Wahl

It is common to dissociate load computation from structural analysis when carrying out a numerical assessment of a wind turbine blade. Loads are usually computed using a multiphysics and multibody beam finite element model of the whole turbine, whereas detailed structural analysis is managed using shell finite element models. This raises the issue of the application of the loads extracted from the beam finite element model at one node for each section and transposed into the shell finite element model. After presenting the methods found in the literature, a new method is proposed. This takes into account the physical consistency of loads: aerodynamic loads are applied as pressure on the blade surface, and inertial loads are applied as body loads. Corrections imposed by pressure and body load computation in order to match loads from the beam finite element model are proposed and a comparison with two other methods is discussed.


Author(s):  
Bruna Nabuco ◽  
Sandro D. Amador ◽  
Evangelos I. Katsanos ◽  
Ulf T. Tygesen ◽  
Erik Damgaard Christensen ◽  
...  

Abstract Aiming to ensure the structural integrity of an offshore structure, wave-induced responses have been measured during normal operating conditions. Operational Modal Analysis is applied to the data obtained from continuously monitoring the structure. Sensors placed only on the topside of an offshore platform are sufficient to provide information to identify the modal properties of the structure, such as natural frequencies, damping ratios, and mode shapes. A finite element model is created and updated in line with the identified dynamic properties for applying a modal expansion technique in the interest of accessing information at any point of the structure. Wave radars are also placed at the platform from which the wave forces are calculated based on basic industrial standard models. In this way, the wave kinematics are estimated according to the linear wave theory associated with Wheeler stretching. Since this study is related to offshore structures composed by slender elements, the wave forces are estimated using Morison formulation. By assigning typical values to the drag and inertia coefficients, wave loads are estimated and applied to the updated finite element model. For the diffraction effect, the wave load has also been evaluated according to MacCamy and Fuchs theory. The responses obtained from this procedure are compared with measured responses. In addition to describing the process, this paper presents a case study to verify the theory using monitoring data from a tripod jacket. Results indicate realistic response estimation that contributes to the knowledge about the state of the structure.


Sign in / Sign up

Export Citation Format

Share Document