Three-dimensional solution for transient thermoelastic problem of a functionally graded rectangular plate with piecewise exponential law

2013 ◽  
Vol 106 ◽  
pp. 672-680 ◽  
Author(s):  
Yoshihiro Ootao ◽  
Masayuki Ishihara
2012 ◽  
Vol 591-593 ◽  
pp. 2655-2660 ◽  
Author(s):  
Guo Jun Nie ◽  
Zhao Yang Feng ◽  
Jun Tao Shi ◽  
Ying Ya Lu ◽  
Zheng Zhong

Three-dimensional elastic solution of a simply supported, transversely isotropic functionally graded rectangular plate is presented in this paper. Suppose that all elastic coefficients of the material have the same power-law dependence on the thickness coordinate. By introducing two new displacement functions, three equations of equilibrium in terms of displacements are reduced to two uncoupled partial differential equations. Exact solution for a second-order partial differential equation expressed by one of displacement functions is obtained and analytical solution for another fourth-order partial differential equation expressed by another displacement function is found by employing the Frobenius method. The validity of the present solution is first investigated. And the effect of the gradation of material properties on the mechanical behavior of the plate is studied through numerical examples.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3401 ◽  
Author(s):  
Cui ◽  
Zhou ◽  
Ye ◽  
Gaidai ◽  
Li ◽  
...  

The three-dimensional vibration of a functionally graded sandwich rectangular plate on an elastic foundation with normal boundary conditions was analyzed using a semi-analytical method based on three-dimensional elasticity theory. The material properties of the sandwich plate varied with thickness according to the power law distribution. Two types of functionally graded material (FGM) sandwich plates were investigated in this paper: one with a homogeneous core and FGM facesheets, and another with homogeneous panels and an FGM core. Various displacements of the plates were created using an improved Fourier series consisting of a standard Fourier cosine series along with a certain number of closed-form auxiliary functions satisfying the essential boundary conditions. The vibration behavior of the FGM sandwich plate, including the natural frequencies and mode shapes, was obtained using the Ritz method. The effectiveness and accuracy of the suggested technique were fully verified by comparing the natural frequencies of sandwich plates with results from investigations of other functionally graded sandwich rectangular plates in the literature. A parametric study, including elastic parameters, foundation parameters, power law exponents, and layer thickness ratios, was performed, and some new results are presented.


Sign in / Sign up

Export Citation Format

Share Document