Analysis of dispersive waves in repetitive lattices based on homogenized second-gradient continuum models

2016 ◽  
Vol 152 ◽  
pp. 712-728 ◽  
Author(s):  
H. Reda ◽  
Y. Rahali ◽  
J.F. Ganghoffer ◽  
H. Lakiss
2017 ◽  
Vol 181 ◽  
pp. 347-357 ◽  
Author(s):  
K. Berkache ◽  
S. Deogekar ◽  
I. Goda ◽  
R.C. Picu ◽  
J.-F. Ganghoffer

2016 ◽  
Vol 51 (2) ◽  
pp. 153-170 ◽  
Author(s):  
Gabriele Barbagallo ◽  
Angela Madeo ◽  
Ismael Azehaf ◽  
Ivan Giorgio ◽  
Fabrice Morestin ◽  
...  

The classical continuum models used for the woven fabrics do not fully describe the whole set of phenomena that occur during the testing of those materials. This incompleteness is partially due to the absence of energy terms related to some microstructural properties of the fabric and, in particular, to the bending stiffness of the yarns. To account for the most fundamental microstructure-related deformation mechanisms occurring in unbalanced interlocks, a second-gradient, hyperelastic, initially orthotropic continuum model is proposed. A constitutive expression for the strain energy density is introduced to account for (a) in-plane shear deformations, (b) highly different bending stiffnesses in the warp and weft directions, and (c) fictive elongations in the warp and weft directions which eventually describe the relative sliding of the yarns. Numerical simulations which are able to reproduce the experimental behavior of unbalanced carbon interlocks subjected to a bias extension test are presented. In particular, the proposed model captures the macroscopic asymmetric S-shaped deformation of the specimen, as well as the main features of the associated deformation patterns of the yarns at the mesoscopic scale.


Author(s):  
Gabriele Barbagallo ◽  
Marco Valerio d’Agostino ◽  
Alexios Aivaliotis ◽  
Ali Daouadji ◽  
Ahmed Makradi ◽  
...  

2012 ◽  
Vol 340 (8) ◽  
pp. 575-589 ◽  
Author(s):  
Angela Madeo ◽  
D. George ◽  
T. Lekszycki ◽  
Mathieu Nierenberger ◽  
Yves Rémond

Sign in / Sign up

Export Citation Format

Share Document