Piecewise shear deformation theory and finite element formulation for vibration analysis of laminated composite and sandwich plates in thermal environments

2017 ◽  
Vol 160 ◽  
pp. 1060-1083 ◽  
Author(s):  
Rui Zhao ◽  
Kaiping Yu ◽  
Gregory M. Hulbert ◽  
Ying Wu ◽  
Xiangyang Li
2019 ◽  
Vol 30 (16) ◽  
pp. 2478-2501 ◽  
Author(s):  
M Vinyas ◽  
AS Sandeep ◽  
T Nguyen-Thoi ◽  
F Ebrahimi ◽  
DN Duc

In this article, the free vibration behaviour of circular and annular magneto-electro-elastic plates has been investigated under the framework of higher order shear deformation theory. The three-dimensional finite element formulation has been derived with the aid of Hamilton’s principle by taking into account the coupling between elastic, electric and magnetic properties. The equations of motion are solved using condensation technique. Furthermore, the credibility of proposed finite element formulation has been validated using COMSOL software and also by comparing the results with previously published articles. Special attention has also been paid to assess the influence of parameters such as coupling effect, stacking sequences and inner-to-outer diameter ratio. The numerical results reveal that the coupled natural frequencies of the annular magneto-electro-elastic plates vary significantly with the circular hole dimensions incorporated. The circular and annular plates are considered as one of the prominent structural components in various engineering and industrial application. Therefore, the proposed finite element formulation and the results presented in this article can serve as benchmark solutions for the design and analysis of smart sensors and actuators.


Author(s):  
Neeraj Grover ◽  
Bhrigu N Singh ◽  
Dipak K Maiti

A generalized finite element modeling of recently developed secant function based shear deformation theory is formulated and implemented for free vibration and buckling characteristics of laminated-composite and sandwich plates. The shear deformation is expressed in terms of a secant function of thickness coordinate. The theory inherently satisfies the zero transverse shear conditions on top and bottom surfaces of the plate. An eight-noded C0 continuous element is chosen by an adequate choice of nodal field variables. The governing equations are obtained for the free vibration and buckling responses of laminated-composite and sandwich plates. Intensive numerical experiments are conducted to investigate the influence of span-thickness ratio, boundary conditions, etc. on the free vibration and buckling behavior. The comparison of present results with the published results indicates the performance and range of applicability of the present theory in the framework of finite element analysis.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Trung Thanh Tran ◽  
Van Ke Tran ◽  
Pham Binh Le ◽  
Van Minh Phung ◽  
Van Thom Do ◽  
...  

This paper carries out forced vibration analysis of graphene nanoplatelet-reinforced composite laminated shells in thermal environments by employing the finite element method (FEM). Material properties including elastic modulus, specific gravity, and Poisson’s ratio are determined according to the Halpin–Tsai model. The first-order shear deformation theory (FSDT), which is based on the 8-node isoparametric element to establish the oscillation equation of shell structure, is employed in this work. We then code the computing program in the MATLAB application and examine the verification of convergence rate and reliability of the program by comparing the data of present work with those of other exact solutions. The effects of both geometric parameters and mechanical properties of materials on the forced vibration of the structure are investigated.


Sign in / Sign up

Export Citation Format

Share Document