Linking active sensing and spatial learning in weakly electric fish

2021 ◽  
Vol 71 ◽  
pp. 1-10
Author(s):  
Jacob Engelmann ◽  
Avner Wallach ◽  
Leonard Maler
2016 ◽  
Vol 115 (5) ◽  
pp. 2577-2592 ◽  
Author(s):  
James J. Jun ◽  
André Longtin ◽  
Leonard Maler

Active sensing behaviors reveal what an animal is attending to and how it changes with learning. Gymnotus sp., a gymnotiform weakly electric fish, generates an electric organ discharge (EOD) as discrete pulses to actively sense its surroundings. We monitored freely behaving gymnotid fish in a large dark “maze” and extracted their trajectories and EOD pulse pattern and rate while they learned to find food with electrically detectable landmarks as cues. After training, they more rapidly found food using shorter, more stereotyped trajectories and spent more time near the food location. We observed three forms of active sensing: sustained high EOD rates per unit distance (sampling density), transient large increases in EOD rate (E-scans) and stereotyped scanning movements (B-scans) were initially strong at landmarks and food, but, after learning, intensified only at the food location. During probe (no food) trials, after learning, the fish's search area and intense active sampling was still centered on the missing food location, but now also increased near landmarks. We hypothesize that active sensing is a behavioral manifestation of attention and essential for spatial learning; the fish use spatial memory of landmarks and path integration to reach the expected food location and confine their attention to this region.


Ethology ◽  
2017 ◽  
Vol 123 (8) ◽  
pp. 551-559 ◽  
Author(s):  
Kyriacos Kareklas ◽  
Robert W. Elwood ◽  
Richard A. Holland

2021 ◽  
Vol 224 (22) ◽  
Author(s):  
Te K. Jones ◽  
Kathryne M. Allen ◽  
Cynthia F. Moss

ABSTRACT Animals that rely on electrolocation and echolocation for navigation and prey detection benefit from sensory systems that can operate in the dark, allowing them to exploit sensory niches with few competitors. Active sensing has been characterized as a highly specialized form of communication, whereby an echolocating or electrolocating animal serves as both the sender and receiver of sensory information. This characterization inspires a framework to explore the functions of sensory channels that communicate information with the self and with others. Overlapping communication functions create challenges for signal privacy and fidelity by leaving active-sensing animals vulnerable to eavesdropping, jamming and masking. Here, we present an overview of active-sensing systems used by weakly electric fish, bats and odontocetes, and consider their susceptibility to heterospecific and conspecific jamming signals and eavesdropping. Susceptibility to interference from signals produced by both conspecifics and prey animals reduces the fidelity of electrolocation and echolocation for prey capture and foraging. Likewise, active-sensing signals may be eavesdropped, increasing the risk of alerting prey to the threat of predation or the risk of predation to the sender, or drawing competition to productive foraging sites. The evolutionary success of electrolocating and echolocating animals suggests that they effectively counter the costs of active sensing through rich and diverse adaptive behaviors that allow them to mitigate the effects of competition for signal space and the exploitation of their signals.


Author(s):  
Stefan Mucha ◽  
Lauren J. Chapman ◽  
Rüdiger Krahe

AbstractAnthropogenic environmental degradation has led to an increase in the frequency and prevalence of aquatic hypoxia (low dissolved oxygen concentration, DO), which may affect habitat quality for water-breathing fishes. The weakly electric black ghost knifefish, Apteronotus albifrons, is typically found in well-oxygenated freshwater habitats in South America. Using a shuttle-box design, we exposed juvenile A. albifrons to a stepwise decline in DO from normoxia (> 95% air saturation) to extreme hypoxia (10% air saturation) in one compartment and chronic normoxia in the other. On average, A. albifrons actively avoided the hypoxic compartment below 22% air saturation. Hypoxia avoidance was correlated with upregulated swimming activity. Following avoidance, fish regularly ventured back briefly into deep hypoxia. Hypoxia did not affect the frequency of their electric organ discharges. Our results show that A. albifrons is able to sense hypoxia at non-lethal levels and uses active avoidance to mitigate its adverse effects.


Author(s):  
Martin Worm ◽  
Tim Landgraf ◽  
Gerhard von der Emde

AbstractAfrican weakly electric fish communicate at night by constantly emitting and perceiving brief electrical signals (electric organ discharges, EOD) at variable inter-discharge intervals (IDI). While the waveform of single EODs contains information about the sender’s identity, the variable IDI patterns convey information about its current motivational and behavioural state. Pairs of fish can synchronize their EODs to each other via echo responses, and we have previously formulated a ‘social attention hypothesis’ stating that fish use echo responses to address specific individuals and establish brief dyadic communication frameworks within a group. Here, we employed a mobile fish robot to investigate the behaviour of small groups of up to four Mormyrus rume and characterized the social situations during which synchronizations occurred. An EOD-emitting robot reliably evoked social following behaviour, which was strongest in smaller groups and declined with increasing group size. We did not find significant differences in motor behaviour of M. rume with either an interactive playback (echo response) or a random control playback by the robot. Still, the robot reliably elicited mutual synchronizations with other fish. Synchronizations mostly occurred during relatively close social interactions, usually when the fish that initiated synchronization approached either the robot or another fish from a distance. The results support our social attention hypothesis and suggest that electric signal synchronization might facilitate the exchange of social information during a wide range of social behaviours from aggressive territorial displays to shoaling and even cooperative hunting in some mormyrids.


Sign in / Sign up

Export Citation Format

Share Document