Communication with self, friends and foes in active-sensing animals

2021 ◽  
Vol 224 (22) ◽  
Author(s):  
Te K. Jones ◽  
Kathryne M. Allen ◽  
Cynthia F. Moss

ABSTRACT Animals that rely on electrolocation and echolocation for navigation and prey detection benefit from sensory systems that can operate in the dark, allowing them to exploit sensory niches with few competitors. Active sensing has been characterized as a highly specialized form of communication, whereby an echolocating or electrolocating animal serves as both the sender and receiver of sensory information. This characterization inspires a framework to explore the functions of sensory channels that communicate information with the self and with others. Overlapping communication functions create challenges for signal privacy and fidelity by leaving active-sensing animals vulnerable to eavesdropping, jamming and masking. Here, we present an overview of active-sensing systems used by weakly electric fish, bats and odontocetes, and consider their susceptibility to heterospecific and conspecific jamming signals and eavesdropping. Susceptibility to interference from signals produced by both conspecifics and prey animals reduces the fidelity of electrolocation and echolocation for prey capture and foraging. Likewise, active-sensing signals may be eavesdropped, increasing the risk of alerting prey to the threat of predation or the risk of predation to the sender, or drawing competition to productive foraging sites. The evolutionary success of electrolocating and echolocating animals suggests that they effectively counter the costs of active sensing through rich and diverse adaptive behaviors that allow them to mitigate the effects of competition for signal space and the exploitation of their signals.

2008 ◽  
Vol 6 (34) ◽  
pp. 417-433 ◽  
Author(s):  
Claire M Postlethwaite ◽  
Tiffany M Psemeneki ◽  
Jangir Selimkhanov ◽  
Mary Silber ◽  
Malcolm A MacIver

Animal behaviour arises through a complex mixture of biomechanical, neuronal, sensory and control constraints. By focusing on a simple, stereotyped movement, the prey capture strike of a weakly electric fish, we show that the trajectory of a strike is one which minimizes effort. Specifically, we model the fish as a rigid ellipsoid moving through a fluid with no viscosity, governed by Kirchhoff's equations. This formulation allows us to exploit methods of discrete mechanics and optimal control to compute idealized fish trajectories that minimize a cost function. We compare these with the measured prey capture strikes of weakly electric fish from a previous study. The fish has certain movement limitations that are not incorporated in the mathematical model, such as not being able to move sideways. Nonetheless, we show quantitatively that the computed least-cost trajectories are remarkably similar to the measured trajectories. Since, in this simplified model, the basic geometry of the idealized fish determines the favourable modes of movement, this suggests a high degree of influence between body shape and movement capability. Simplified minimal models and optimization methods can give significant insight into how body morphology and movement capability are closely attuned in fish locomotion.


1999 ◽  
Vol 202 (10) ◽  
pp. 1195-1203 ◽  
Author(s):  
M.E. Nelson ◽  
M.A. Maciver

Sensory systems are faced with the task of extracting behaviorally relevant information from complex sensory environments. In general, sensory acquisition involves two aspects: the control of peripheral sensory surfaces to improve signal reception and the subsequent neural filtering of incoming sensory signals to extract and enhance signals of interest. The electrosensory system of weakly electric fish provides a good model system for studying both these aspects of sensory acquisition. On the basis of infrared video recordings of black ghost knifefish (Apteronotus albifrons) feeding on small prey (Daphnia magna) in the dark, we reconstruct three-dimensional movement trajectories of the fish and prey. We combine the reconstructed trajectory information with models of peripheral electric image formation and primary electrosensory afferent response dynamics to estimate the spatiotemporal patterns of transdermal potential change and afferent activation that occur during prey-capture behavior. We characterize the behavioral strategies used by the fish, with emphasis on the functional importance of the dorsal edge in prey capture behavior, and we analyze the electrosensory consequences. In particular, we find that the high-pass filter characteristics of P-type afferent response dynamics can serve as a predictive filter for estimating the future position of the prey as the electrosensory image moves across the receptor array.


2021 ◽  
Vol 15 ◽  
Author(s):  
Federico Pedraja ◽  
Hendrik Herzog ◽  
Jacob Engelmann ◽  
Sarah Nicola Jung

Despite considerable advances, studying electrocommunication of weakly electric fish, particularly in pulse-type species, is challenging as very short signal epochs at variable intervals from a few hertz up to more than 100 Hz need to be assigned to individuals. In this study, we show that supervised learning approaches offer a promising tool to automate or semiautomate the workflow, and thereby allowing the analysis of much longer episodes of behavior in a reasonable amount of time. We provide a detailed workflow mainly based on open resource software. We demonstrate the usefulness by applying the approach to the analysis of dyadic interactions of Gnathonemus petersii. Coupling of the proposed methods with a boundary element modeling approach, we are thereby able to model the information gained and provided during agonistic encounters. The data indicate that the passive electrosensory input, in particular, provides sufficient information to localize a contender during the pre-contest phase, fish did not use or rely on the theoretically also available sensory information of the contest outcome-determining size difference between contenders before engaging in agonistic behavior.


2018 ◽  
Vol 15 (138) ◽  
pp. 20170633 ◽  
Author(s):  
Aaron R. Shifman ◽  
John E. Lewis

Sensory systems encode environmental information that is necessary for adaptive behavioural choices, and thus greatly influence the evolution of animal behaviour and the underlying neural circuits. Here, we evaluate how the quality of sensory information impacts the jamming avoidance response (JAR) in weakly electric fish. To sense their environment, these fish generate an oscillating electric field: the electric organ discharge (EOD). Nearby fish with similar EOD frequencies perform the JAR to increase the difference between their EOD frequencies, i.e. their difference frequency (DF). The fish determines the sign of the DF: when it has a lower frequency (DF > 0), EOD frequency is decreased and vice versa . We study the sensory basis of the JAR in two species: Apteronotus leptorhynchus have a high frequency ( ca 1000 Hz), spatio-temporally heterogeneous electric field, whereas Eigenmannia sp. have a low frequency ( ca 300 Hz), spatially uniform field. We show that the increased complexity of the Apteronotus field decreases the reliability of sensory cues used to determine the DF. Interestingly, Apteronotus responds to all JAR stimuli by increasing EOD frequency, having lost the neural pathway that produces JAR-related decreases in EOD frequency. Our results suggest that electric field complexity may have influenced the evolution of the JAR by degrading the related sensory information.


2018 ◽  
Author(s):  
Debojyoti Biswas ◽  
Luke A. Arend ◽  
Sarah A. Stamper ◽  
Balázs P. Vágvölgyi ◽  
Eric S. Fortune ◽  
...  

SummaryActive sensing involves the production of motor signals for the purpose of acquiring sensory information [1–3]. The most common form of active sensing, found across animal taxa and behaviors, involves the generation of movements—e.g. whisking [4–6], touching [7,8], sniffing [9,10], and eye movements [11]. Active-sensing movements profoundly affect the information carried by sensory feedback pathways [12–15] and are modulated by both top-down goals (e.g. measuring weight vs. texture [1,16]) and bottom-up stimuli (e.g. lights on/off [12]) but it remains unclear if and how these movements are controlled in relation to the ongoing feedback they generate. To investigate the control of movements for active sensing, we created an experimental apparatus for freely swimming weakly electric fish, Eigenmannia virescens, that modulates the gain of reafferent feedback by adjusting the position of a refuge based on real time videographic measurements of fish position. We discovered that fish robustly regulate sensory slip via closed-loop control of active-sensing movements. Specifically, as fish performed the task of maintaining position inside the refuge [17–22], they dramatically up- or down-regulated fore-aft active-sensing movements in relation to a 4-fold change of experimentally modulated reafferent gain. These changes in swimming movements served to maintain a constant magnitude of sensory slip. The magnitude of sensory slip depended on the presence or absence of visual cues. These results indicate that fish use two controllers: one that controls the acquisition of information by regulating feedback from active sensing movements, and another that maintains position in the refuge, a control structure that may be ubiquitous in animals [23,24].


2021 ◽  
Vol 71 ◽  
pp. 1-10
Author(s):  
Jacob Engelmann ◽  
Avner Wallach ◽  
Leonard Maler

Sign in / Sign up

Export Citation Format

Share Document