Do spinal circuits still require gating of sensory information by presynaptic inhibition after spinal cord injury?

2021 ◽  
Vol 19 ◽  
pp. 113-118
Author(s):  
Nicolas R Lalonde ◽  
Tuan V Bui
2016 ◽  
Vol 310 (11) ◽  
pp. F1258-F1268 ◽  
Author(s):  
Charles H. Hubscher ◽  
Lynnette R. Montgomery ◽  
Jason D. Fell ◽  
James E. Armstrong ◽  
Pradeepa Poudyal ◽  
...  

Spinal cord injury (SCI) causes dramatic changes in the quality of life, including coping with bladder dysfunction which requires repeated daily and nightly catheterizations. Our laboratory has recently demonstrated in a rat SCI model that repetitive sensory information generated through task-specific stepping and/or loading can improve nonlocomotor functions, including bladder function (Ward PJ, Herrity AN, Smith RR, Willhite A, Harrison BJ, Petruska JC, Harkema SJ, Hubscher CH. J Neurotrauma 31: 819–833, 2014). To target potential underlying mechanisms, the current study included a forelimb-only exercise group to ascertain whether improvements may be attributed to general activity effects that impact target organ-neural interactions or to plasticity of the lumbosacral circuitry that receives convergent somatovisceral inputs. Male Wistar rats received a T9 contusion injury and were randomly assigned to three groups 2 wk postinjury: quadrupedal locomotion, forelimb exercise, or a nontrained group. Throughout the study (including preinjury), all animals were placed in metabolic cages once a week for 24 h to monitor water intake and urine output. Following the 10-wk period of daily 1-h treadmill training, awake cystometry data were collected and bladder and kidney tissue harvested for analysis. Metabolic cage frequency-volume measurements of voiding and cystometry reveal an impact of exercise training on multiple SCI-induced impairments related to various aspects of urinary tract function. Improvements in both the quadrupedal and forelimb-trained groups implicate underlying mechanisms beyond repetitive sensory information from the hindlimbs driving spinal network excitability of the lumbosacral urogenital neural circuitry. Furthermore, the impact of exercise training on the upper urinary tract (kidney) underscores the health benefit of activity-based training on the entire urinary system within the SCI population.


2000 ◽  
Vol 80 (7) ◽  
pp. 688-700 ◽  
Author(s):  
Andrea L Behrman ◽  
Susan J Harkema

AbstractMany individuals with spinal cord injury (SCI) do not regain their ability to walk, even though it is a primary goal of rehabilitation. Mammals with thoracic spinal cord transection can relearn to step with their hind limbs on a treadmill when trained with sensory input associated with stepping. If humans have similar neural mechanisms for locomotion, then providing comparable training may promote locomotor recovery after SCI. We used locomotor training designed to provide sensory information associated with locomotion to improve stepping and walking in adults after SCI. Four adults with SCIs, with a mean postinjury time of 6 months, received locomotor training. Based on the American Spinal Injury Association (ASIA) Impairment Scale and neurological classification standards, subject 1 had a T5 injury classified as ASIA A, subject 2 had a T5 injury classified as ASIA C, subject 3 had a C6 injury classified as ASIA D, and subject 4 had a T9 injury classified as ASIA D. All subjects improved their stepping on a treadmill. One subject achieved overground walking, and 2 subjects improved their overground walking. Locomotor training using the response of the human spinal cord to sensory information related to locomotion may improve the potential recovery of walking after SCI.


2018 ◽  
Vol 19 (7) ◽  
pp. 727.e1-727.e15 ◽  
Author(s):  
Anthony Park ◽  
Olivia Uddin ◽  
Ying Li ◽  
Radi Masri ◽  
Asaf Keller

2014 ◽  
Vol 111 (11) ◽  
pp. 2264-2275 ◽  
Author(s):  
Maria Knikou ◽  
Chaithanya K. Mummidisetty

Spinal inhibition is significantly reduced after spinal cord injury (SCI) in humans. In this work, we examined if locomotor training can improve spinal inhibition exerted at a presynaptic level. Sixteen people with chronic SCI received an average of 45 training sessions, 5 days/wk, 1 h/day. The soleus H-reflex depression in response to low-frequency stimulation, presynaptic inhibition of soleus Ia afferent terminals following stimulation of the common peroneal nerve, and bilateral EMG recovery patterns were assessed before and after locomotor training. The soleus H reflexes evoked at 1.0, 0.33, 0.20, 0.14, and 0.11 Hz were normalized to the H reflex evoked at 0.09 Hz. Conditioned H reflexes were normalized to the associated unconditioned H reflex evoked with subjects seated, while during stepping both H reflexes were normalized to the maximal M wave evoked after the test H reflex at each bin of the step cycle. Locomotor training potentiated homosynaptic depression in all participants regardless the type of the SCI. Presynaptic facilitation of soleus Ia afferents remained unaltered in motor complete SCI patients. In motor incomplete SCIs, locomotor training either reduced presynaptic facilitation or replaced presynaptic facilitation with presynaptic inhibition at rest. During stepping, presynaptic inhibition was modulated in a phase-dependent manner. Locomotor training changed the amplitude of locomotor EMG excitability, promoted intralimb and interlimb coordination, and altered cocontraction between knee and ankle antagonistic muscles differently in the more impaired leg compared with the less impaired leg. The results provide strong evidence that locomotor training improves premotoneuronal control after SCI in humans at rest and during walking.


Sign in / Sign up

Export Citation Format

Share Document