Time-varying mean-variance portfolio selection problem solving via LVI-PDNN

2021 ◽  
pp. 105582
Author(s):  
Vasilios N. Katsikis ◽  
Spyridon D. Mourtas ◽  
Predrag S. Stanimirović ◽  
Shuai Li ◽  
Xinwei Cao
Author(s):  
Xin Huang ◽  
Duan Li

Traditional modeling on the mean-variance portfolio selection often assumes a full knowledge on statistics of assets' returns. It is, however, not always the case in real financial markets. This paper deals with an ambiguous mean-variance portfolio selection problem with a mixture model on the returns of risky assets, where the proportions of different component distributions are assumed to be unknown to the investor, but being constants (in any time instant). Taking into consideration the updates of proportions from future observations is essential to find an optimal policy with active learning feature, but makes the problem intractable when we adopt the classical methods. Using reinforcement learning, we derive an investment policy with a learning feature in a two-level framework. In the lower level, the time-decomposed approach (dynamic programming) is adopted to solve a family of scenario subcases where in each case the series of component distributions along multiple time periods is specified. At the upper level, a scenario-decomposed approach (progressive hedging algorithm) is applied in order to iteratively aggregate the scenario solutions from the lower layer based on the current knowledge on proportions, and this two-level solution framework is repeated in a manner of rolling horizon. We carry out experimental studies to illustrate the execution of our policy scheme.


2020 ◽  
Vol 23 (06) ◽  
pp. 2050042 ◽  
Author(s):  
ELENA VIGNA

This paper addresses a comparison between different approaches to time inconsistency for the mean-variance portfolio selection problem. We define a suitable intertemporal preferences-driven reward and use it to compare three common approaches to time inconsistency for the mean-variance portfolio selection problem over [Formula: see text]: precommitment approach, consistent planning or game theoretical approach, and dynamically optimal approach. We prove that, while the precommitment strategy beats the other two strategies (that is a well-known obvious result), the consistent planning strategy dominates the dynamically optimal strategy until a time point [Formula: see text] and is dominated by the dynamically optimal strategy from [Formula: see text] onwards. Existence and uniqueness of the break even point [Formula: see text] is proven.


This paper states the ‘general mean-variance portfolio analysis problem’ and its solution, and briefly discusses its use in practice.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Huiling Wu

It remained prevalent in the past years to obtain the precommitment strategies for Markowitz's mean-variance portfolio optimization problems, but not much is known about their time-consistent strategies. This paper takes a step to investigate the time-consistent Nash equilibrium strategies for a multiperiod mean-variance portfolio selection problem. Under the assumption that the risk aversion is, respectively, a constant and a function of current wealth level, we obtain the explicit expressions for the time-consistent Nash equilibrium strategy and the equilibrium value function. Many interesting properties of the time-consistent results are identified through numerical sensitivity analysis and by comparing them with the classical pre-commitment solutions.


Sign in / Sign up

Export Citation Format

Share Document