Face the (Trigger) Failure: Trigger failures strongly drive the effect of reward on response inhibition

Cortex ◽  
2021 ◽  
Author(s):  
R.A. Doekemeijer ◽  
F. Verbruggen ◽  
C.N. Boehler
2018 ◽  
Author(s):  
Patrick Skippen ◽  
Dora Matzke ◽  
Andrew Heathcote ◽  
Ross Fulham ◽  
Patricia Michie ◽  
...  

The ability to control behaviour is thought to rely at least partly on adequately suppressing impulsive responses to external stimuli. However, the evidence for a relationship between response inhibition ability and impulse control is weak and inconsistent. This study investigates the relationship between response inhibition and both self-report and behavioural measures of impulsivity as well as engagement in risky behaviours in a large community sample (N=174) of healthy adolescents and young adults (15-35yrs). Using a stop-signal paradigm with a number parity go task, we implemented a novel hierarchical Bayesian model of response inhibition that estimates stop-signal reaction time (SSRT) as a distribution and also accounts for failures to react to the stop-signal (i.e., “trigger failure”), and failure to react to the choice stimulus (i.e., “go failure” or omission errors). In line with previous studies, the model reduced estimates of SSRT by approximately 100ms compared with traditional non-parametric SSRT estimation techniques. We found significant relationships between behavioural and self-report measures of impulsivity and traditionally estimated SSRT, that did not hold for the model-based SSRT estimates. Instead, behavioural impulsivity measures were correlated with rate of trigger failure. The relationship between trigger failure and impulsivity suggests that the former may index a higher order inhibition process, whereas SSRT may index a more automatic inhibition process. We suggest that the existence of distinct response inhibition processes that may be associated with different levels of cognitive control.


2019 ◽  
Author(s):  
P Skippen ◽  
W. R Fulham ◽  
P.T Michie ◽  
D Matzke ◽  
A Heathcote ◽  
...  

AbstractWe investigate the neural correlates underpinning response inhibition using a parametric ex-Gaussian model of stop-signal task performance, fit with hierarchical Bayesian methods, in a large healthy sample (N=156). The parametric model accounted for trigger failure (i.e., failures to initiate the inhibition process) and returned an SSRT estimate (SSRTEXG3) that was attenuated by ≈65ms compared to traditional non-parametric SSRT estimates (SSRTint). The amplitude and latency of the N1 and P3 event related potential components were derived for both stop-success and stop-failure trials and compared to behavioural estimates derived from traditional (SSRTint) and parametric (SSRTEXG3, trigger failure) models. Both the fronto-central N1 and P3 peaked earlier and were larger for stop-success than stop-failure trials. For stop-failure trials only, N1 peak latency correlated with both SSRT estimates as well as trigger failure and temporally coincided with SSRTEXG3, but not SSRTint. In contrast, P3 peak and onset latency were not associated with any behavioural estimates of inhibition for either trial type. While overall the N1 peaked earlier for stop-success than stop-failure trials, this effect was not found in poor task performers (i.e., high trigger failure/slow SSRT). These findings are consistent with attentional modulation of both the speed and reliability of the inhibition process, but not for poor performers. Together with the absence of any P3 onset latency effect, our findings suggest that attentional mechanisms are important in supporting speeded and reliable inhibition processes required in the stop-signal task.


2011 ◽  
Author(s):  
I. C. Suarez ◽  
B. Burle ◽  
F. Vidal ◽  
L. Casini
Keyword(s):  

2019 ◽  
Vol 33 (8) ◽  
pp. 1136-1150
Author(s):  
Nathalie Bedoin ◽  
Raphaëlle Abadie ◽  
Jennifer Krzonowski ◽  
Emmanuel Ferragne ◽  
Agathe Marcastel

2012 ◽  
Vol 43 (01) ◽  
Author(s):  
A Franz ◽  
O Granert ◽  
M Rijntjes ◽  
HR Siebner ◽  
C Weiller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document