A survey of the modified Moran process and evolutionary graph theory

2021 ◽  
Vol 39 ◽  
pp. 100347
Author(s):  
Josep Díaz ◽  
Dieter Mitsche
2021 ◽  
Vol 8 (10) ◽  
Author(s):  
Travis Monk ◽  
André van Schaik

Evolutionary graph theory investigates how spatial constraints affect processes that model evolutionary selection, e.g. the Moran process. Its principal goals are to find the fixation probability and the conditional distributions of fixation time, and show how they are affected by different graphs that impose spatial constraints. Fixation probabilities have generated significant attention, but much less is known about the conditional time distributions, even for simple graphs. Those conditional time distributions are difficult to calculate, so we consider a close proxy to it: the number of times the mutant population size changes before absorption. We employ martingales to obtain the conditional characteristic functions (CCFs) of that proxy for the Moran process on the complete bipartite graph. We consider the Moran process on the complete bipartite graph as an absorbing random walk in two dimensions. We then extend Wald’s martingale approach to sequential analysis from one dimension to two. Our expressions for the CCFs are novel, compact, exact, and their parameter dependence is explicit. We show that our CCFs closely approximate those of absorption time. Martingales provide an elegant framework to solve principal problems of evolutionary graph theory. It should be possible to extend our analysis to more complex graphs than we show here.


Author(s):  
Karan Pattni ◽  
Mark Broom ◽  
Jan Rychtář ◽  
Lara J. Silvers

Evolution in finite populations is often modelled using the classical Moran process. Over the last 10 years, this methodology has been extended to structured populations using evolutionary graph theory. An important question in any such population is whether a rare mutant has a higher or lower chance of fixating (the fixation probability) than the Moran probability, i.e. that from the original Moran model, which represents an unstructured population. As evolutionary graph theory has developed, different ways of considering the interactions between individuals through a graph and an associated matrix of weights have been considered, as have a number of important dynamics. In this paper, we revisit the original paper on evolutionary graph theory in light of these extensions to consider these developments in an integrated way. In particular, we find general criteria for when an evolutionary graph with general weights satisfies the Moran probability for the set of six common evolutionary dynamics.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Andreas Pavlogiannis ◽  
Josef Tkadlec ◽  
Krishnendu Chatterjee ◽  
Martin A. Nowak

Author(s):  
T. Monk ◽  
P. Green ◽  
M. Paulin

Evolutionary graph theory is the study of birth–death processes that are constrained by population structure. A principal problem in evolutionary graph theory is to obtain the probability that some initial population of mutants will fixate on a graph, and to determine how that fixation probability depends on the structure of that graph. A fluctuating mutant population on a graph can be considered as a random walk. Martingales exploit symmetry in the steps of a random walk to yield exact analytical expressions for fixation probabilities. They do not require simplifying assumptions such as large population sizes or weak selection. In this paper, we show how martingales can be used to obtain fixation probabilities for symmetric evolutionary graphs. We obtain simpler expressions for the fixation probabilities of star graphs and complete bipartite graphs than have been previously reported and show that these graphs do not amplify selection for advantageous mutations under all conditions.


Biosystems ◽  
2012 ◽  
Vol 107 (2) ◽  
pp. 66-80 ◽  
Author(s):  
Paulo Shakarian ◽  
Patrick Roos ◽  
Anthony Johnson

2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Pei-ai Zhang

Evolutionary graph theory is a nice measure to implement evolutionary dynamics on spatial structures of populations. To calculate the fixation probability is usually regarded as a Markov chain process, which is affected by the number of the individuals, the fitness of the mutant, the game strategy, and the structure of the population. However the position of the new mutant is important to its fixation probability. Here the position of the new mutant is laid emphasis on. The method is put forward to calculate the fixation probability of an evolutionary graph (EG) of single level. Then for a class of bilevel EGs, their fixation probabilities are calculated and some propositions are discussed. The conclusion is obtained showing that the bilevel EG is more stable than the corresponding one-rooted EG.


Author(s):  
Paulo Shakarian ◽  
Abhinav Bhatnagar ◽  
Ashkan Aleali ◽  
Elham Shaabani ◽  
Ruocheng Guo

2014 ◽  
Vol 360 ◽  
pp. 117-128 ◽  
Author(s):  
Wes Maciejewski ◽  
Gregory J. Puleo

2010 ◽  
Vol 3 (4) ◽  
pp. 189-194 ◽  
Author(s):  
Chris Paley ◽  
Sergei Taraskin ◽  
Stephen Elliott

Sign in / Sign up

Export Citation Format

Share Document