weak selection
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 60)

H-INDEX

35
(FIVE YEARS 4)

Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 685
Author(s):  
Shasha Cui ◽  
Jian Ouyang ◽  
Yu Lu ◽  
Wenzhi Liu ◽  
Wenyang Li ◽  
...  

Unravelling the patterns, potential processes and mechanisms underlying biodiversity has always been a crucial issue in community ecology. It is also a necessary first step for any conservation and restoration to better adapt fragile ecosystems to a changing climate. However, little is known regarding the structure and maintenance of plant communities in typical high-altitude wetlands. Here, we made a comprehensive analysis of the diversity and composition of wetland plant communities based on the distribution of plants near the shorelines of 19 lakes across the Qinghai-Tibetan Plateau. The latitude, mean annual temperature (MAT) and mean annual precipitation (MAP), along with the edaphic properties, were the dominant predictors affecting the taxonomic and phylogenetic α-diversity. Besides diversification, ecological drift, mixing with weak dispersal and weak selection shaped the community composition of wetland plants in our study. The latitude and MAP predictors, although modest, showed an impact on the community structure.


2021 ◽  
Author(s):  
Brian Charlesworth

The effects of selection on variability at linked sites have an important influence on levels and patterns of within-population variation across the genome. Most theoretical models of these effects have assumed that selection is sufficiently strong that allele frequency changes at the loci concerned are largely deterministic. These models have led to the conclusion that directional selection for new selectively favorable mutations, or against recurrent deleterious mutations, reduces nucleotide site diversity at linked neutral sites. Recent work has shown, however, that fixations of weakly selected mutations, accompanied by significant stochastic changes in allele frequencies, can sometimes cause higher diversity at linked sites when compared with the effects of fixations of neutral mutations. The present paper extends this work by deriving approximate expressions for the mean times to loss and fixation of mutations subject to selection, and analysing the conditions under which selection increases rather than reduces these times. Simulations are used to examine the relations between diversity at a neutral site and the fixation and loss times of mutations at a linked site subject to selection. It is shown that the long-term level of neutral diversity can be increased over the equilibrium expectation in the absence of selection by recurrent fixations and losses of linked, weakly selected dominant or partially dominant favorable mutations, and by linked recessive or partially recessive deleterious mutations. The results are used to examine the conditions under which associative overdominance, as opposed to background selection, is likely to operate.


Genetics ◽  
2021 ◽  
Author(s):  
Bogi Trickovic ◽  
Sylvain Glémin

Abstract Populations often inhabit multiple ecological patches and thus experience divergent selection, which can lead to local adaptation if migration is not strong enough to swamp locally adapted alleles. Conditions for the establishment of a locally advantageous allele have been studied in randomly mating populations. However, many species reproduce, at least partially, through self-fertilization, and how selfing affects local adaptation remains unclear and debated. Using a two-patch branching process formalism, we obtained a closed-form approximation under weak selection for the probability of establishment of a locally advantageous allele (P) for arbitrary selfing rate and dominance level, where selection is allowed to act on viability or fecundity, and migration can occur via seed or pollen dispersal. This solution is compared to diffusion approximation and used to investigate the consequences of a shift in a mating system on P, and the establishment of protected polymorphism. We find that selfing can either increase or decrease P, depending on the patterns of dominance in the two patches, and has conflicting effects on local adaptation. Globally, selfing favors local adaptation when locally advantageous alleles are (partially) recessive, when selection between patches is asymmetrical and when migration occurs through pollen rather than seed dispersal. These results establish a rigorous theoretical background to study heterogeneous selection and local adaptation in partially selfing species.


Author(s):  
Manh Hong Duong ◽  
The Anh Han

Institutions can provide incentives to enhance cooperation in a population where this behaviour is infrequent. This process is costly, and it is thus important to optimize the overall spending. This problem can be mathematically formulated as a multi-objective optimization problem where one wishes to minimize the cost of providing incentives while ensuring a minimum level of cooperation, sustained over time. Prior works that consider this question usually omit the stochastic effects that drive population dynamics. In this paper, we provide a rigorous analysis of this optimization problem, in a finite population and stochastic setting, studying both pairwise and multi-player cooperation dilemmas. We prove the regularity of the cost functions for providing incentives over time, characterize their asymptotic limits (infinite population size, weak selection and large selection) and show exactly when reward or punishment is more cost efficient. We show that these cost functions exhibit a phase transition phenomenon when the intensity of selection varies. By determining the critical threshold of this phase transition, we provide exact calculations for the optimal cost of the incentive, for any given intensity of selection. Numerical simulations are also provided to demonstrate analytical observations. Overall, our analysis provides for the first time a selection-dependent calculation of the optimal cost of institutional incentives (for both reward and punishment) that guarantees a minimum level of cooperation over time. It is of crucial importance for real-world applications of institutional incentives since the intensity of selection is often found to be non-extreme and specific for a given population.


2021 ◽  
Author(s):  
Maryn O. Carlson ◽  
Daniel P. Rice ◽  
Jeremy J. Berg ◽  
Matthias Steinrücken

AbstractPolygenic scores link the genotypes of ancient individuals to their phenotypes, which are often unobservable, offering a tantalizing opportunity to reconstruct complex trait evolution. In practice, however, interpretation of ancient polygenic scores is subject to numerous assumptions. For one, the genome-wide association (GWA) studies from which polygenic scores are derived, can only estimate effect sizes for loci segregating in contemporary populations. Therefore, a GWA study may not correctly identify all loci relevant to trait variation in the ancient population. In addition, the frequencies of trait-associated loci may have changed in the intervening years. Here, we devise a theoretical framework to quantify the effect of this allelic turnover on the statistical properties of polygenic scores as functions of population genetic dynamics, trait architecture, power to detect significant loci, and the age of the ancient sample. We model the allele frequencies of loci underlying trait variation using the Wright-Fisher diffusion, and employ the spectral representation of its transition density to find analytical expressions for several error metrics, including the correlation between an ancient individual’s polygenic score and true phenotype, referred to as polygenic score accuracy. Our theory also applies to a two-population scenario and demonstrates that allelic turnover alone may explain a substantial percentage of the reduced accuracy observed in cross-population predictions, akin to those performed in human genetics. Finally, we use simulations to explore the effects of recent directional selection, a bias-inducing process, on the statistics of interest. We find that even in the presence of bias, weak selection induces minimal deviations from our neutral expectations for the decay of polygenic score accuracy. By quantifying the limitations of polygenic scores in an explicit evolutionary context, our work lays the foundation for the development of more sophisticated statistical procedures to analyze both temporally and geographically resolved polygenic scores.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jonathan Yinhao Huang ◽  
Shirong Cai ◽  
Zhongwei Huang ◽  
Mya Thway Tint ◽  
Wen Lun Yuan ◽  
...  

AbstractAssisted reproductive technologies (ART) are increasingly used, however little is known about the long-term health of ART-conceived offspring. Weak selection of comparison groups and poorly characterized mechanisms impede current understanding. In a prospective cohort (Growing Up in Singapore Towards healthy Outcomes; GUSTO; Clinical Trials ID: NCT01174875) including 83 ART-conceived and 1095 spontaneously-conceived singletons, we estimate effects of ART on anthropometry, blood pressure, serum metabolic biomarkers, and cord tissue DNA methylation by emulating a pragmatic trial supported by machine learning-based estimators. We find ART-conceived children to be shorter (−0.5 SD [95% CI: −0.7, −0.2]), lighter (−0.6 SD [−0.9, −0.3]) and have lower skinfold thicknesses (e.g. −14% [−24%, −3%] suprailiac), and blood pressure (−3 mmHg [−6, −0.5] systolic) at 6-6.5 years, with no strong differences in metabolic biomarkers. Differences are not explained by parental anthropometry or comorbidities, polygenic risk score, breastfeeding, or illnesses. Our simulations demonstrate ART is strongly associated with lower NECAB3 DNA methylation, with negative control analyses suggesting these estimates are unbiased. However, methylation changes do not appear to mediate observed differences in child phenotype.


2021 ◽  
Author(s):  
Philip Gerlee

AbstractWe show that under the assumption of weak frequency-dependent selection a wide class of population dynamical models can be analysed using perturbation theory. The inner solution corresponds to the ecological dynamics, where to zeroth order, the genotype frequencies remain constant. The outer solution provides the evolutionary dynamics and corresponds, to zeroth order, to a generalisation of the replicator equation. We apply this method to a model of public goods dynamics and show that the error between the composite solution, which describes the dynamics for all times, and the solution to the full model scales linearly with the strength of selection.


2021 ◽  
Vol 118 (34) ◽  
pp. e2107204118
Author(s):  
Kaleda K. Denton ◽  
Uri Liberman ◽  
Marcus W. Feldman

Humans and nonhuman animals display conformist as well as anticonformist biases in cultural transmission. Whereas many previous mathematical models have incorporated constant conformity coefficients, empirical research suggests that the extent of (anti)conformity in populations can change over time. We incorporate stochastic time-varying conformity coefficients into a widely used conformity model, which assumes a fixed number n of “role models” sampled by each individual. We also allow the number of role models to vary over time (nt). Under anticonformity, nonconvergence can occur in deterministic and stochastic models with different parameter values. Even if strong anticonformity may occur, if conformity or random copying (i.e., neither conformity nor anticonformity) is expected, there is convergence to one of the three equilibria seen in previous deterministic models of conformity. Moreover, this result is robust to stochastic variation in nt. However, dynamic properties of these equilibria may be different from those in deterministic models. For example, with random conformity coefficients, all equilibria can be stochastically locally stable simultaneously. Finally, we study the effect of randomly changing weak selection. Allowing the level of conformity, the number of role models, and selection to vary stochastically may produce a more realistic representation of the wide range of group-level properties that can emerge under (anti)conformist biases. This promises to make interpretation of the effect of conformity on differences between populations, for example those connected by migration, rather difficult. Future research incorporating finite population sizes and migration would contribute added realism to these models.


2021 ◽  
Author(s):  
Robert Horvath ◽  
Mitra Menon ◽  
Michelle C Stitzer ◽  
Jeffrey Ross-Ibarra

Recognition of the important role of transposable elements (TEs) in eukaryotic genomes quickly led to a burgeoning literature modeling and estimating the effects of selection on TEs. Much of the empirical work on selection has focused on analyzing the site frequency spectrum (SFS) of TEs. But TEs differ from standard evolutionary models in a number of ways that can impact the power and interpretation of the SFS. For example, rather than mutating under a clock-like model, transposition often occurs in bursts which can inflate particular frequency categories compared to expectations under a standard neutral model. If a TE burst has been recent, the excess of low frequency polymorphisms can mimic the effect of purifying selection. Here, we investigate how transposition bursts affect the frequency distribution of TEs and the correlation between age and allele frequency. Using information on the TE age distribution, we propose an age-adjusted site frequency spectrum to compare TEs and neutral polymorphisms to more effectively evaluate whether TEs are under selective constraints. We show that our approach can minimize instances of false inference of selective constraint, but also allows for a correct identification of even weak selection affecting TEs which experienced a transposition burst and is robust to at least simple demographic changes. The results presented here will help researchers working on TEs to more reliably identify the effects of selection on TEs without having to rely on the assumption of a constant transposition rate.


Sign in / Sign up

Export Citation Format

Share Document