evolutionary graph theory
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 8 (10) ◽  
Author(s):  
Travis Monk ◽  
André van Schaik

Evolutionary graph theory investigates how spatial constraints affect processes that model evolutionary selection, e.g. the Moran process. Its principal goals are to find the fixation probability and the conditional distributions of fixation time, and show how they are affected by different graphs that impose spatial constraints. Fixation probabilities have generated significant attention, but much less is known about the conditional time distributions, even for simple graphs. Those conditional time distributions are difficult to calculate, so we consider a close proxy to it: the number of times the mutant population size changes before absorption. We employ martingales to obtain the conditional characteristic functions (CCFs) of that proxy for the Moran process on the complete bipartite graph. We consider the Moran process on the complete bipartite graph as an absorbing random walk in two dimensions. We then extend Wald’s martingale approach to sequential analysis from one dimension to two. Our expressions for the CCFs are novel, compact, exact, and their parameter dependence is explicit. We show that our CCFs closely approximate those of absorption time. Martingales provide an elegant framework to solve principal problems of evolutionary graph theory. It should be possible to extend our analysis to more complex graphs than we show here.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sedigheh Yagoobi ◽  
Arne Traulsen

AbstractThe effect of population structure on evolutionary dynamics is a long-lasting research topic in evolutionary ecology and population genetics. Evolutionary graph theory is a popular approach to this problem, where individuals are located on the nodes of a network and can replace each other via the links. We study the effect of complex network structure on the fixation probability, but instead of networks of individuals, we model a network of sub-populations with a probability of migration between them. We ask how the structure of such a meta-population and the rate of migration affect the fixation probability. Many of the known results for networks of individuals carry over to meta-populations, in particular for regular networks or low symmetric migration probabilities. However, when patch sizes differ we find interesting deviations between structured meta-populations and networks of individuals. For example, a two patch structure with unequal population size suppresses selection for low migration probabilities.


2021 ◽  
Author(s):  
Sedigheh Yagoobi ◽  
Arne Traulsen

The effect of population structure on evolutionary dynamics is a long-lasting research topic in evolutionary ecology and population genetics. Evolutionary graph theory is a popular approach to this problem, where individuals are located on the nodes of a network and can replace each other via the links. We study the effect of complex network structure on the fixation probability, but instead of networks of individuals, we model a network of sub-populations with a probability of migration between them. We ask how the structure of such a meta-population and the rate of migration affect the fixation probability. Many of the known results for networks of individuals carry over to meta-populations, in particular for regular networks or low symmetric migration probabilities. However, when patch sizes differ we find interesting deviations between structured meta-populations and networks of individuals. For example, a two-patch structure with unequal population size suppresses selection for low migration probabilities.


2021 ◽  
Author(s):  
Oana Carja ◽  
Yang Ping Kuo

To design population topologies that can accelerate rates of solution discovery in directed evolution problems or in evolutionary optimization applications, we must first systematically understand how population structure shapes evolutionary outcome. Using the mathematical formalism of evolutionary graph theory, recent studies have shown how to topologically build networks of population interaction that increase probabilities of fixation of beneficial mutations, at the expense, however, of longer fixation times, which can slow down rates of evolution under elevated mutation rate. Here we find that moving beyond dyadic interactions is fundamental to explain the trade-offs between probability and time to fixation. We show that higher-order motifs, and in particular three-node structures, allow tuning of times to fixation, without changes in probabilities of fixation. This gives a near-continuous control over achieving solutions that allow for a wide range of times to fixation. We apply our algorithms and analytic results to two evolutionary optimization problems and show that the rate at which evolving agents learn to navigate their environment can be tuned near continuously by adjusting the higher-order topology of the agent population. We show that the effects of population structure on the rate of evolution critically depend on the optimization landscape and find that decelerators, with longer times to fixation of new mutants, are able to reach the optimal solutions faster than accelerators in complex solution spaces. Our results highlight that no one population topology fits all optimization applications, and we provide analytic and computational tools that allow for the design of networks suitable for each specific task.


2021 ◽  
Vol 82 (5) ◽  
Author(s):  
Christopher E. Overton ◽  
Kieran J. Sharkey

AbstractAs ecosystems evolve, species can become extinct due to fluctuations in the environment. This leads to the evolutionary adaption known as bet-hedging, where species hedge against these fluctuations to reduce their likelihood of extinction. Environmental variation can be either within or between generations. Previous work has shown that selection for bet-hedging against within-generational variation should not occur in large populations. However, this work has been limited by assumptions of well-mixed populations, whereas real populations usually have some degree of structure. Using the framework of evolutionary graph theory, we show that through adding competition structure to the population, within-generational variation can have a significant impact on the evolutionary process for any population size. This complements research using subdivided populations, which suggests that within-generational variation is important when local population sizes are small. Together, these conclusions provide evidence to support observations by some ecologists that are contrary to the widely held view that only between-generational environmental variation has an impact on natural selection. This provides theoretical justification for further empirical study into this largely unexplored area.


2021 ◽  
pp. 110648
Author(s):  
Karan Pattni ◽  
Christopher E. Overton ◽  
Kieran J. Sharkey

2019 ◽  
Vol 16 (152) ◽  
pp. 20180918 ◽  
Author(s):  
Jessie Renton ◽  
Karen M. Page

Cooperation is prevalent in nature, not only in the context of social interactions within the animal kingdom but also on the cellular level. In cancer, for example, tumour cells can cooperate by producing growth factors. The evolution of cooperation has traditionally been studied for well-mixed populations under the framework of evolutionary game theory, and more recently for structured populations using evolutionary graph theory (EGT). The population structures arising due to cellular arrangement in tissues, however, are dynamic and thus cannot be accurately represented by either of these frameworks. In this work, we compare the conditions for cooperative success in an epithelium modelled using EGT, to those in a mechanical model of an epithelium—the Voronoi tessellation (VT) model. Crucially, in this latter model, cells are able to move, and birth and death are not spatially coupled. We calculate fixation probabilities in the VT model through simulation and an approximate analytic technique and show that this leads to stronger promotion of cooperation in comparison with the EGT model.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Andreas Pavlogiannis ◽  
Josef Tkadlec ◽  
Krishnendu Chatterjee ◽  
Martin A. Nowak

2017 ◽  
Vol 14 (135) ◽  
pp. 20170509 ◽  
Author(s):  
Madison S. Krieger ◽  
Alex McAvoy ◽  
Martin A. Nowak

In evolutionary processes, population structure has a substantial effect on natural selection. Here, we analyse how motion of individuals affects constant selection in structured populations. Motion is relevant because it leads to changes in the distribution of types as mutations march towards fixation or extinction. We describe motion as the swapping of individuals on graphs, and more generally as the shuffling of individuals between reproductive updates. Beginning with a one-dimensional graph, the cycle, we prove that motion suppresses natural selection for death–birth (DB) updating or for any process that combines birth–death (BD) and DB updating. If the rule is purely BD updating, no change in fixation probability appears in the presence of motion. We further investigate how motion affects evolution on the square lattice and weighted graphs. In the case of weighted graphs, we find that motion can be either an amplifier or a suppressor of natural selection. In some cases, whether it is one or the other can be a function of the relative reproductive rate, indicating that motion is a subtle and complex attribute of evolving populations. As a first step towards understanding less restricted types of motion in evolutionary graph theory, we consider a similar rule on dynamic graphs induced by a spatial flow and find qualitatively similar results, indicating that continuous motion also suppresses natural selection.


Sign in / Sign up

Export Citation Format

Share Document