scholarly journals Soil amendment by composted plant wastes reduces the Verticillium dahliae abundance and changes soil chemical properties in a bell pepper cropping system

2020 ◽  
Vol 22 ◽  
pp. 100148 ◽  
Author(s):  
Ashraf M. Tubeileh ◽  
Gregg T. Stephenson
2020 ◽  
Vol 6 ◽  
pp. 115-126
Author(s):  
Shukra Raj Shrestha ◽  
Jiban Shrestha ◽  
Sanjeet Kumar Jha ◽  
Dinesh Khadka ◽  
Prakash Paneru ◽  
...  

Field experiments were conducted for four years (2014-2017) at five locations namely Salbani, Bhokraha, Simariya, Bhaluwa and Kaptanganj of Sunsari district to assess the changes in soil chemical properties under conservation agriculture (CA)-based practices in two cropping systems namely rice-kidney bean-maize at Salbani and rice-wheat at rest of the locations. In rice-wheat cropping system, there were four treatments: (1) conventional tillage (CT) for rice transplantation and subsequent wheat sowing, (2) conventional tillage rice transplantation followed by zero tillage (ZT) wheat, (3) unpuddled rice transplantation followed by zero tillage wheat, (4) zero tillage in both rice and wheat. Similarly, in rice-kidney bean-maize cropping system, there were four treatments; (1) conventional tillage for rice transplantation and sowing of both kidney bean and maize, (2) conventional tillage rice transplantation followed by zero tillage in both kidney bean and maize, (3) unpuddled rice transplantation followed by zero tillage in both kidney bean and maize, (4) zero tillage in all three crops. Soil samples were taken at initial and every year after rice harvest.The soil samples were analyzed for total nitrogen, available phosphorus, available potassium, pH and soil organic matter.Total nitrogen (N) showed a slightly decreasing trend in the first three years and showed a slight increase at the end of experiment under ZT in all locations. The total N under ZT changed from 0.12 to 0.13%, 0.05 to 0.06%, 0.10 to 0.12%, 0.11 to 0.08% and 0.09 to 0.13% in Salbani, Bhokraha, Simariya, Bhaluwa and Kaptanganj, respectively.  All locations showed the positive values of available potassium; Salbani  revealing considerable change of 64.3 to 78.5 mg/kg in CT while 68.4 to 73.3 mg/kg in ZT condition. The treatment where rice was transplanted in unpuddled condition and zero tilled to wheat, had a mean value of available phosphorus and potassium as 87.3 and 81.9 mg/kg respectively. Soil pH ranged from 4.8 to 7.1 in CT while it was 5.2 to 6.8 in ZT across the locations. The change in soil organic matter in CT of all locations except Salbani was narrower as compared to ZT.


Soil Science ◽  
2013 ◽  
Vol 178 (1) ◽  
pp. 46-53 ◽  
Author(s):  
Li Hui ◽  
He Jin ◽  
Wang Qingjie ◽  
Li Hongwen ◽  
Amerigo Sivelli ◽  
...  

2006 ◽  
Vol 21 (1) ◽  
pp. 26-35 ◽  
Author(s):  
M.M. Mikha ◽  
M.F. Vigil ◽  
M.A. Liebig ◽  
R.A. Bowman ◽  
B. McConkey ◽  
...  

AbstractSoil management and cropping systems have long-term effects on agronomic and environmental functions. This study examined the influence of contrasting management practices on selected soil chemical properties in eight long-term cropping system studies throughout the Great Plains and the western Corn Belt. For each study, soil organic C (SOC), total N (TN), particulate organic matter (POM), inorganic N, electrical conductivity (EC), and soil pH were evaluated at 0–7.5, 7.5–15, and 15–30 cm within conventional (CON) and alternative (ALT) cropping systems for 4 years (1999–2002). Treatment effects were primarily limited to the surface 7.5 cm of soil. No-tillage (NT) and/or elimination of fallow in ALT cropping systems resulted in significantly (P<0.05) greater SOC and TN at 0–7.5 cm within five of the eight study sites [Akron, Colorado (CO); Bushland, Texas (TX); Fargo, North Dakota (ND); Mandan, ND; and Swift Current, Saskatchewan (SK), Canada]. The same pattern was observed with POM, where POM was significantly (P<0.05) greater at four of the eight study sites [Bushland, TX, Mandan, ND, Sidney, Montana (MT), and Swift Current, SK]. No consistent pattern was observed with soil EC and pH due to management, although soil EC explained almost 60% of the variability in soil NO3-N at 0–7.5 cm across all locations and sampling times. In general, chemical soil properties measured in this study consistently exhibited values more conducive to crop production and environmental quality in ALT cropping systems relative to CON cropping systems.


2014 ◽  
Vol 47 (6) ◽  
pp. 553-557
Author(s):  
Yejin Lee ◽  
Hong-Bae Yun ◽  
Jwa-Kyung Sung ◽  
Sang-Keun Ha ◽  
Yo-Sung Song ◽  
...  

Author(s):  
A. S. M. J. Alam ◽  
S. R. Saha ◽  
M. G. Miah ◽  
M. M. Rahman ◽  
M. R. Islam ◽  
...  

Soil health needs to be improved for the sustenance of a productive agriculture and sound environment where alley cropping system might play a vital role. The study was composed of two factors viz. three alley widths of Gliricidia sepium (3.0, 4.5 and 6.0 m), and five nitrogen levels (0, 25, 50, 75 and 100% of the recommended dose) along with pruned materials in a split-plot design with three replications. The soil chemical properties were examined in alleys of Gliricidia sepium tree over two consecutive seasons. Results displayed that pruned materials (PM) of G. sepium increased the soil pH, organic carbon (OC), total nitrogen (N), available phosphorus (P) and sulfur (S), exchangeable calcium (Ca), magnesium (Mg), potassium (K), and cation exchange capacity (CEC) of soil in different alley widths compared to the control. However, alley width 3.0 m and 100% N along with PM displayed the maximum OC (0.94%), total N (0.21%), available P (16.26 ppm), exchangeable Ca (2.54 meq/100 g) and Mg (0.90 meq/100 g), while maximum exchangeable K and CEC were noted in alley width 4.5 m and 100% N along with PM. The above results explicated that the improvement of the soil chemical properties by using pruned materials of G. sepium in alleys can be a promising option for uplifting the soil health condition as well as sustainable agricultural practices.


2016 ◽  
Vol 13 (2) ◽  
pp. 62-73 ◽  
Author(s):  
A K M Saiful Islam ◽  
M A Saleque ◽  
M M Hossain ◽  
A K M Aminul Islam

Soil organic matter, nitrogen (N), phosphorus (P) and potassium (K) nutrition of rice-maize cropping systems are important for sustaining crop productivity and food security. An experiment was conducted to determine the effects of tillage practices and residue retention on soil chemical properties in rice-maize cropping system. Conventional tillage, single pass wet tillage in rice (rotated with zero tillage in maize), bed planting (unpuddled rice transplanting) and strip tillage (unpuddled rice transplanting) in vertical plots and residue retention (0, 50 and 100%) in horizontal plot were tested for three consecutive years (2009-12). Rice was grown as transplanted irrigated crop and maize as upland crop. After third crop, strip tillage increased soil organic matter compared to bed and zero tillage at 0–7.5 cm soil depth. After three years, retention of crop residues, irrespective of tillage treatments, increased soil organic matter (SOM) at 7.5–15.0 cm soil depth. Tillage practices (puddled or unpudled) showed no significant changes in SOM. Neither tillage nor residue management had any significant effect on soil pH, total nitrogen, available phosphorus and exchangeable potassium.DOI: http://dx.doi.org/10.3329/agric.v13i2.26589The Agriculturists 2015; 13(2) 62-73


Sign in / Sign up

Export Citation Format

Share Document